scispace - formally typeset
Search or ask a question
Author

Mohsen Guizani

Bio: Mohsen Guizani is an academic researcher from Qatar University. The author has contributed to research in topics: Computer science & Cloud computing. The author has an hindex of 79, co-authored 1110 publications receiving 31282 citations. Previous affiliations of Mohsen Guizani include Jaypee Institute of Information Technology & University College for Women.


Papers
More filters
Journal ArticleDOI
TL;DR: This article starts with the formulation of the complete design problem, possible design strategies are identified and adopted, and the implementation of the proposed bridge is described.
Abstract: This article starts with the formulation of the complete design problem. Possible design strategies are then identified and adopted along with the reasons for adoption. Finally, the article describes the implementation of the proposed bridge. © 1997 John Wiley & Sons, Ltd.

8 citations

Journal ArticleDOI
TL;DR: A proposed classifier considers multipath fading effects on the received signal in a non-Gaussian noise environment for automatic modulation classification of some common modulation schemes, i.e., B PSK, QPSK, 8-PSK and 16-QAM.
Abstract: In this research, a classifier is proposed for automatic modulation classification of some common modulation schemes, i.e., BPSK, QPSK, 8-PSK and 16-QAM. Our proposed classifier considers multipath fading effects on the received signal in a non-Gaussian noise environment. Automatic modulation classification is very challenging in real-world scenarios due to fading effects and additive Gaussian mixture noise on modulation schemes. Most of the available modulation classifiers do not consider the fading effects which results in degradation of classification in a blind channel environment. In our work, the channel is supposed to be suffering from excessive additive Gaussian mixture noise and frequency selective fading resulting in low signal SNR. The estimation of the unknown channel along with noise parameters is performed using ECM algorithm and then used in maximum-likelihood classifier for the classification of modulation schemes. Simulation results are presented that show 2 dB improvement in performance than classifier which considers only Gaussian noise in the received signal.

8 citations

Journal ArticleDOI
01 Jun 2021
TL;DR: In order to reduce the resource consumption of traditional consensus algorithms, improve their adaptability in the edge computing environment, and solve the security problem caused by the concentration of node rights, a prestige‐based edge computing blockchain security consensus model (ECBCM).

8 citations

Journal ArticleDOI
TL;DR: An Optimized Differential prIvate Online tRansaction scheme (O-DIOR) for online banks to set boundaries of consumption amounts with added noises and in-depth theoretical analysis is provided to prove that these schemes are capable to satisfy the differential privacy constraint.
Abstract: Online banks may disclose consumers’ shopping preferences due to various attacks. With differential privacy, each consumer can disturb his consumption amount locally before sending it to online banks. However, directly applying differential privacy in online banks will incur problems in reality because existing differential privacy schemes do not consider handling the noise boundary problem. In this paper, we propose an Optimized Differential prIvate Online tRansaction scheme (O-DIOR) for online banks to set boundaries of consumption amounts with added noises. We then revise O-DIOR to design a RO-DIOR scheme to select different boundaries while satisfying the differential privacy definition. Moreover, we provide in-depth theoretical analysis to prove that our schemes are capable to satisfy the differential privacy constraint. Finally, to evaluate the effectiveness, we have implemented our schemes in mobile payment experiments. Experimental results illustrate that the relevance between the consumption amount and online bank amount is reduced significantly, and the privacy losses are less than 0.5 in terms of mutual information.

8 citations

Posted Content
TL;DR: This paper introduces a methodology aiming to secure the sensitive data through re-thinking the distribution strategy, without adding any computation overhead, and introduces an online heuristic that supports heterogeneous IoT devices as well as multiple DNNs and datasets, making the pervasive system a general-purpose platform for privacy-aware and low decision-latency applications.
Abstract: With the emergence of smart cities, Internet of Things (IoT) devices as well as deep learning technologies have witnessed an increasing adoption. To support the requirements of such paradigm in terms of memory and computation, joint and real-time deep co-inference framework with IoT synergy was introduced. However, the distribution of Deep Neural Networks (DNN) has drawn attention to the privacy protection of sensitive data. In this context, various threats have been presented, including black-box attacks, where a malicious participant can accurately recover an arbitrary input fed into his device. In this paper, we introduce a methodology aiming to secure the sensitive data through re-thinking the distribution strategy, without adding any computation overhead. First, we examine the characteristics of the model structure that make it susceptible to privacy threats. We found that the more we divide the model feature maps into a high number of devices, the better we hide proprieties of the original image. We formulate such a methodology, namely DistPrivacy, as an optimization problem, where we establish a trade-off between the latency of co-inference, the privacy level of the data, and the limited-resources of IoT participants. Due to the NP-hardness of the problem, we introduce an online heuristic that supports heterogeneous IoT devices as well as multiple DNNs and datasets, making the pervasive system a general-purpose platform for privacy-aware and low decision-latency applications.

8 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2002

9,314 citations