scispace - formally typeset
Search or ask a question
Author

Mohsen Guizani

Bio: Mohsen Guizani is an academic researcher from Qatar University. The author has contributed to research in topics: Computer science & Cloud computing. The author has an hindex of 79, co-authored 1110 publications receiving 31282 citations. Previous affiliations of Mohsen Guizani include Jaypee Institute of Information Technology & University College for Women.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article , the authors provide a comprehensive description on access control protocols for the Internet of Things (IoT) and discuss open research issues and challenges in a blockchain-envisioned IoT network.
Abstract: With rapid advancements in the technology, almost all the devices around are becoming smart and contribute to the Internet of Things (IoT) network. When a new IoT device is added to the network, it is important to verify the authenticity of the device before allowing it to communicate with the network. Hence, access control is a crucial security mechanism that allows only the authenticated node to become the part of the network. An access control mechanism also supports confidentiality, by establishing a session key that accomplishes secure communications in open public channels. Recently, blockchain has been implemented in access control protocols to provide a better security mechanism. The foundation of this survey article is laid on IoT, where a detailed description on IoT, its architecture and applications is provided. Further, various security challenges and issues, security attacks possible in IoT and their countermeasures are also provided. We emphasize on the blockchain technology and its evolution in IoT. A detailed description on existing consensus mechanisms and how blockchain can be used to overpower IoT vulnerabilities is highlighted. Moreover, we provide a comprehensive description on access control protocols. The protocols are classified into certificate-based, certificate-less and blockchain-based access control mechanisms for better understanding. We then elaborate on each use case like smart home, smart grid, health care and smart agriculture while describing access control mechanisms. The detailed description not only explains the implementation of the access mechanism, but also gives a wider vision on IoT applications. Next, a rigorous comparative analysis is performed to showcase the efficiency of all protocols in terms of computation and communication costs. Finally, we discuss open research issues and challenges in a blockchain-envisioned IoT network.

4 citations

Proceedings ArticleDOI
10 Jun 2014
TL;DR: A queueing model is established to describe the system with greedy secondary user (GSU), and a wavelet based detection approach is proposed in order to detect such a cunning behavior as quickly as possible.
Abstract: Recently, security of cognitive radio (CR) is becoming a severe issue. There is one kind of threat, which we call greedy spectrum occupancy threat (GSOT) in this paper, has long been ignored in previous work. In GSOT, a secondary user may selfishly occupy the spectrum for a long time, which makes other users suffer additional waiting time in queue to access the spectrum and leads to congestion or breakdown. In this paper, a queueing model is established to describe the system with greedy secondary user (GSU). Based on this model, the impacts of GSU on the system are evaluated. Numerical results indicate that the steady-state performance of the system is influenced not only by average occupancy time, but also by the number of users as well as number of channels. Since a sudden change in average occupancy time of GSU will produce dramatic performance degradation, the greedy second user prefers to increase its occupancy time in a gradual manner in case it is detected easily. Once it reaches its targeted occupancy time, the system will be in steady state, and the performance will be degraded. In order to detect such a cunning behavior as quickly as possible, we propose a wavelet based detection approach. Simulation results are presented to demonstrate the effectiveness and quickness of the proposed approach.

4 citations

Posted Content
TL;DR: By dealing with the multi-modal data which people may pay more attention to when selecting items, the proposed multimodal IRIS significantly improves accuracy and interpretability on top-N recommendation task over the state-of-the-art methods.
Abstract: Nowadays, the recommendation systems are applied in the fields of e-commerce, video websites, social networking sites, etc., which bring great convenience to people's daily lives. The types of the information are diversified and abundant in recommendation systems, therefore the proportion of unstructured multimodal data like text, image and video is increasing. However, due to the representation gap between different modalities, it is intractable to effectively use unstructured multimodal data to improve the efficiency of recommendation systems. In this paper, we propose an end-to-end Multimodal Interest-Related Item Similarity model (Multimodal IRIS) to provide recommendations based on multimodal data source. Specifically, the Multimodal IRIS model consists of three modules, i.e., multimodal feature learning module, the Interest-Related Network (IRN) module and item similarity recommendation module. The multimodal feature learning module adds knowledge sharing unit among different modalities. Then IRN learn the interest relevance between target item and different historical items respectively. At last, the multimodal data feature learning, IRN and item similarity recommendation modules are unified into an integrated system to achieve performance enhancements and to accommodate the addition or absence of different modal data. Extensive experiments on real-world datasets show that, by dealing with the multimodal data which people may pay more attention to when selecting items, the proposed Multimodal IRIS significantly improves accuracy and interpretability on top-N recommendation task over the state-of-the-art methods.

4 citations

Journal ArticleDOI
TL;DR: The proposed GWO-GR prediction algorithm is shown to provide better performance prediction results than other machine-learning-based methods and the prediction accuracy is improved by 17.7%; the execution time has an 88.9% reduction.
Abstract: The explosive growth of Internet of Vehicle (IoV) applications has made information security a significant issue. Mobile IoV users are dynamic and the communication environment is very complex, which makes it very difficult to guarantee real-time secrecy communication performance. Thus, a reliable and effective evaluation and prediction of secrecy performance is critical. In this article, we have derived novel expressions for secrecy performance. A grey wolf optimization generalized regression (GWO-GR) algorithm is proposed to predict the secrecy performance and carry out the secrecy performance assessment. A generalized regression (GR) neural network is designed. Out of the input and output layers, the proposed GR network has a pattern layer and a summation layer, which can obtain a global convergence of network results. To further optimize the GR network, the grey wolf optimization algorithm is used to obtain the best spread factor for it, which can accelerate its rapid convergence. Through the simulated numerical results, we can obtain: 1) the proposed GWO-GR prediction algorithm is shown to provide better performance prediction results than other machine-learning-based methods; 2) in particular, the prediction accuracy is improved by 17.7%; and 3) the execution time has an 88.9% reduction.

4 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors proposed a new attack algorithm CAMA for deep neural networks, which perturbs each feature extraction layer through adaptive feature measurement function, thereby disrupting the predicted class activation mapping of DNNs.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2002

9,314 citations