scispace - formally typeset
Search or ask a question
Author

Mohsen Guizani

Bio: Mohsen Guizani is an academic researcher from Qatar University. The author has contributed to research in topics: Computer science & Cloud computing. The author has an hindex of 79, co-authored 1110 publications receiving 31282 citations. Previous affiliations of Mohsen Guizani include Jaypee Institute of Information Technology & University College for Women.


Papers
More filters
Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper proposed a secure fuzzy testing approach for honeypot identification inspired by vulnerability mining, which utilizes error handling to distinguish honeypots and real devices, and adopts mutation rules and security rules to generate effective and secure probe packets.
Abstract: In softwarized industrial networking, honeypot identification is very important for both the attacker and the defender. Existing honeypot identification relies on simple features of honeypot. There exist two challenges: The simple feature is easily simulated, which causes inaccurate results, whereas the advanced feature relies on high interactions, which lead to security risks. To cope with these challenges, in this article, we propose a secure fuzzy testing approach for honeypot identification inspired by vulnerability mining. It utilizes error handling to distinguish honeypots and real devices. Specifically, we adopt a novel identification architecture with two steps. First, a multiobject fuzzy testing is proposed. It adopts mutation rules and security rules to generate effective and secure probe packets. Then, these probe packets are used for scanning and identification. Experiments show that the fuzzy testing is effective and corresponding probe packet can acquire more features than other packets. These features are helpful for honeypot identification.

38 citations

Posted Content
TL;DR: In this paper, the concept of reputation is introduced as a metric, and a reliable worker selection scheme is proposed for federated learning tasks, where the Consortium blockchain is leveraged as a decentralized approach for achieving efficient reputation management of the workers without repudiation and tampering.
Abstract: Federated learning, as a promising machine learning approach, has emerged to leverage a distributed personalized dataset from a number of nodes, e.g., mobile devices, to improve performance while simultaneously providing privacy preservation for mobile users. In the federated learning, training data is widely distributed and maintained on the mobile devices as workers. A central aggregator updates a global model by collecting local updates from mobile devices using their local training data to train the global model in each iteration. However, unreliable data may be uploaded by the mobile devices (i.e., workers), leading to frauds in tasks of federated learning. The workers may perform unreliable updates intentionally, e.g., the data poisoning attack, or unintentionally, e.g., low-quality data caused by energy constraints or high-speed mobility. Therefore, finding out trusted and reliable workers in federated learning tasks becomes critical. In this article, the concept of reputation is introduced as a metric. Based on this metric, a reliable worker selection scheme is proposed for federated learning tasks. Consortium blockchain is leveraged as a decentralized approach for achieving efficient reputation management of the workers without repudiation and tampering. By numerical analysis, the proposed approach is demonstrated to improve the reliability of federated learning tasks in mobile networks.

38 citations

Journal ArticleDOI
15 Nov 2018-Sensors
TL;DR: An overview of the ICN-based VANET approach is presented in line with its contributions and research challenges, and the connectivity issues of vehicular ICN model is presented with some other emerging paradigms, such as Software Defined Network (SDN), Cloud, and Edge computing.
Abstract: Information Centric Network (ICN) is expected to be the favorable deployable future Internet paradigm. ICN intends to replace the current IP-based model with the name-based content-centric model, as it aims at providing better security, scalability, and content distribution. However, it is a challenging task to conceive how ICN can be linked with the other most emerging paradigm, i.e., Vehicular Ad hoc Network (VANET). In this article, we present an overview of the ICN-based VANET approach in line with its contributions and research challenges.In addition, the connectivity issues of vehicular ICN model is presented with some other emerging paradigms, such as Software Defined Network (SDN), Cloud, and Edge computing. Moreover, some ICN-based VANET research opportunities, in terms of security, mobility, routing, naming, caching, and fifth generation (5G) communications, are also covered at the end of the paper.

38 citations

BookDOI
10 Mar 2009
TL;DR: This book introduces key cooperative strategies and the vital background information needed for development and implementation of cooperative mechanisms in both infrastructure-based and wireless systems as well as self-organizing, multi-hop networks.
Abstract: Cooperative devices are growing in value with respect to wireless communications and networks. They substantially enhance system performance by decreasing power consumption and packet loss rate, and increasing system capacity and network resilience. This book introduces key cooperative strategies and the vital background information needed for development and implementation of cooperative mechanisms in both infrastructure-based and wireless systems as well as self-organizing, multi-hop networks. Beneficial to academia and industry professionals, this essential reference concentrates on a variety of cooperative mechanisms, the cooperation frameworks in diverse scenarios, and the recent advances in the system performance of wireless networks.

38 citations

Journal ArticleDOI
TL;DR: This article employs the paradigm of SDN technology and proposes an SDN-based underwater cooperative searching framework for AUV-based UWNs and introduces the USBL positioning system and a hierarchical localization framework to localize/track each AUV in the network.
Abstract: With the emergence of new underwater ICTs, UWNs based on AUV have become the mainstream technology for underwater search tasks. These advanced underwater searching technologies are leading to smart perceptual ocean technologies. However, to support precise multi-AUVs cooperative underwater search and provide intelligent data collection and data transfer among the AUVs, one of the challenging issues is to design a scalable network architecture capable of fine-grained control and smart underwater data routing. In this article, we employ the paradigm of SDN technology and propose an SDN-based underwater cooperative searching framework for AUV-based UWNs. In particular, we propose a software-defined beaconing framework integrating two categories of defined beacons to synchronize network information and execute network operations. Based on the software-defined beaconing framework, we introduce the USBL positioning system and propose a hierarchical localization framework to localize/track each AUV in the network. Then, we utilize the potential field theory to model the multi-AUV cooperative operation, leading to a cooperative control framework. Finally, to guarantee the potential data transfer among the AUVs, we also propose a software-defined hybrid data transfer scheduling framework. Simulation results demonstrate that our proposed scheme performs more efficiently than some existing schemes especially the distributed control policy.

38 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2002

9,314 citations