scispace - formally typeset
Search or ask a question
Author

Mohsen Khalily

Bio: Mohsen Khalily is an academic researcher from University of Surrey. The author has contributed to research in topics: Antenna (radio) & Dielectric resonator antenna. The author has an hindex of 28, co-authored 153 publications receiving 2058 citations. Previous affiliations of Mohsen Khalily include Universiti Teknologi Malaysia & Abubakar Tafawa Balewa University.


Papers
More filters
Journal ArticleDOI
TL;DR: Recent innovative methods in back radiations reduction techniques, circular polarization (CP) generation methods, dual polarization techniques, and providing additional robustness against environmental effects are presented.
Abstract: Wearable antennas have gained much attention in recent years due to their attractive features and possibilities in enabling lightweight, flexible, low cost, and portable wireless communication and sensing. Such antennas need to be conformal when used on different parts of the human body, thus need to be implemented using flexible materials and designed in a low profile structure. Ultimately, these antennas need to be capable of operating with minimum degradation in proximity to the human body. Such requirements render the design of wearable antennas challenging, especially when considering aspects such as their size compactness, effects of structural deformation and coupling to the body, and fabrication complexity and accuracy. Despite slight variations in severity according to applications, most of these issues exist in the context of body-worn implementation. This review aims to present different challenges and issues in designing wearable antennas, their material selection, and fabrication techniques. More importantly, recent innovative methods in back radiations reduction techniques, circular polarization (CP) generation methods, dual polarization techniques, and providing additional robustness against environmental effects are first presented. This is followed by a discussion of innovative features and their respective methods in alleviating these issues recently proposed by the scientific community researching in this field.

174 citations

Journal ArticleDOI
TL;DR: In this article, a Ka-band inset-fed microstrip patches linear antenna array is presented for 5G applications in different countries, which employs 16 elements in an H-plane new configuration.
Abstract: A Ka-band inset-fed microstrip patches linear antenna array is presented for the fifth generation (5G) applications in different countries. The bandwidth is enhanced by stacking parasitic patches on top of each inset-fed patch. The array employs 16 elements in an H-plane new configuration. The radiating patches and their feed lines are arranged in an alternating out-of-phase 180° rotating sequence to decrease the mutual coupling and improve the radiation pattern symmetry. A (24.4%) measured bandwidth (24.35–31.13 GHz) is achieved with −15 dB reflection coefficients and 20 dB mutual coupling between the elements. With uniform amplitude distribution, a maximum broadside gain of 19.88 dBi is achieved. Scanning the main beam to 49.5° from the broadside achieved 18.7 dBi gain with −12.1 dB sidelobe level. These characteristics are in good agreement with the simulations, rendering the antenna to be a good candidate for 5G applications.

154 citations

Journal ArticleDOI
TL;DR: The proposed technique can be applied retrospectively and is applicable in closely placed patch antennas in arrays found in multiple-input multiple-output and radar systems.
Abstract: An approach is proposed to reduce mutual coupling between two closely spaced radiating elements. This is achieved by inserting a fractal isolator between the radiating elements. The fractal isolator is an electromagnetic bandgap structure based on metamaterial. With this technique, the gap between radiators is reduced to $\sim 0.65\lambda $ for the reduction in the mutual coupling of up to 37, 21, 20, and 31 dB in the ${X}$ -, Ku -, ${K}$ -, and Ka -bands, respectively. With the proposed technique, the two-element antenna is shown to operate over a wide frequency range, i.e., 8.7–11.7, 11.9–14.6, 15.6–17.1, 22–26, and 29–34.2 GHz. Maximum gain improvement is 71% with no deterioration in the radiation patterns. The antenna’s characteristics were validated through measurement. The proposed technique can be applied retrospectively and is applicable in closely placed patch antennas in arrays found in multiple-input multiple-output and radar systems.

139 citations

Journal ArticleDOI
TL;DR: A photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented and the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented.
Abstract: 5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.

126 citations

Journal ArticleDOI
TL;DR: In this article, a modified 2 × 2 and 3 × 3 series-fed patch antenna arrays with beam-steering capability are designed and fabricated for 28 GHz millimeter-wave applications.
Abstract: New modified 2 × 2 and 3 × 3 series-fed patch antenna arrays with beam-steering capability are designed and fabricated for 28-GHz millimeter-wave applications. In the designs, the patches are connected to each other continuously and in symmetric 2-D format using the high-impedance microstrip lines. In the first design, 3-D beam-scanning range of ± 25° and good radiation and impedance characteristics were attained by using only one phase shifter. In the second one, a new mechanism is introduced to reduce the number of the feed ports and the related phase shifters (from default number 2 N to the reduced number N + 1 in the serial feed (here N = 3) and then the cost, complexity, and size of the design. Here, good scanning performance of a range of ± 20°, acceptable sidelobe level, and gain of 15.6 dB are obtained. These features allow to use additional integrated circuits to improve the gain and performance. A comparison to the conventional array without modification is done. The measured and simulated results and discussions are presented.

113 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

01 Jan 2016

733 citations

01 Jan 2017
TL;DR: The 2017 roadmap of terahertz frequency electromagnetic radiation (100 GHz-30 THz) as mentioned in this paper provides a snapshot of the present state of THz science and technology in 2017, and provides an opinion on the challenges and opportunities that the future holds.
Abstract: Science and technologies based on terahertz frequency electromagnetic radiation (100 GHz–30 THz) have developed rapidly over the last 30 years. For most of the 20th Century, terahertz radiation, then referred to as sub-millimeter wave or far-infrared radiation, was mainly utilized by astronomers and some spectroscopists. Following the development of laser based terahertz time-domain spectroscopy in the 1980s and 1990s the field of THz science and technology expanded rapidly, to the extent that it now touches many areas from fundamental science to 'real world' applications. For example THz radiation is being used to optimize materials for new solar cells, and may also be a key technology for the next generation of airport security scanners. While the field was emerging it was possible to keep track of all new developments, however now the field has grown so much that it is increasingly difficult to follow the diverse range of new discoveries and applications that are appearing. At this point in time, when the field of THz science and technology is moving from an emerging to a more established and interdisciplinary field, it is apt to present a roadmap to help identify the breadth and future directions of the field. The aim of this roadmap is to present a snapshot of the present state of THz science and technology in 2017, and provide an opinion on the challenges and opportunities that the future holds. To be able to achieve this aim, we have invited a group of international experts to write 18 sections that cover most of the key areas of THz science and technology. We hope that The 2017 Roadmap on THz science and technology will prove to be a useful resource by providing a wide ranging introduction to the capabilities of THz radiation for those outside or just entering the field as well as providing perspective and breadth for those who are well established. We also feel that this review should serve as a useful guide for government and funding agencies.

690 citations