scispace - formally typeset
Search or ask a question
Author

Mohsen Sharifpur

Bio: Mohsen Sharifpur is an academic researcher from University of Pretoria. The author has contributed to research in topics: Nanofluid & Heat transfer. The author has an hindex of 26, co-authored 185 publications receiving 2302 citations. Previous affiliations of Mohsen Sharifpur include Eastern Mediterranean University & Duy Tan University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors explained the fundamental mechanisms as well as the important parameters that influence the heat transfer in nanofluids and concluded that there is a lack of a reliable hybrid model that includes all the major mechanisms.
Abstract: Nanofluids, as new heat transfer fluids, are at the center of attention of researchers, while their measured thermal conductivities are more than for conventional heat transfer fluids. Unfortunately, conventional theoretical and empirical models cannot explain the enhancement of the thermal conductivity of nanofluids. Therefore, it is important to understand the fundamental mechanisms as well as the important parameters that influence the heat transfer in nanofluids. Nanofluids’ thermal conductivity enhancement consists of four major mechanisms: Brownian motion of the nanoparticle, nanolayer, clustering, and the nature of heat transport in the nanoparticles. Important factors that affect the thermal conductivity modeling of nanofluids are particle volume fraction, temperature, particles size, pH, and the size and property of nanolayer. In this paper, each mechanism is explained and proposed models are critically reviewed. It is concluded that there is a lack of a reliable hybrid model that includes all me...

192 citations

Journal ArticleDOI
TL;DR: In this article, a critical review of the theoretical, empirical, and numerical models for effective viscosity of nanofluids is presented, and different parameters affecting the visco-lasticity of nanoparticles such as nanoparticle volume fraction, size, shape, temperature, pH, and shearing rate are reviewed.
Abstract: The enhanced thermal characteristics of nanofluids have made it one of the most raplidly growing research areas in the last decade. Numerous researches have shown the merits of nanofluids in heat transfer equipment. However, one of the problems is the increase in viscosity due to the suspension of nanoparticles. This viscosity increase is not desirable in the industry, especially when it involves flow, such as in heat exchanger or microchannel applications where lowering pressure drop and pumping power are of significance. In this regard, a critical review of the theoretical, empirical, and numerical models for effective viscosity of nanofluids is presented. Furthermore, different parameters affecting the viscosity of nanofluids such as nanoparticle volume fraction, size, shape, temperature, pH, and shearing rate are reviewed. Other properties such as nanofluid stability and magnetorheological characteristics of some nanofluids are also reviewed. The important parameters influencing viscosity of nanofluid...

177 citations

Journal ArticleDOI
TL;DR: A review of literature on the effects of using nanofluids (NFs) in energy systems is presented in this paper, where different types of NFs, including the combination of metal and non-metal particles of nanometer sizes with a base fluid, are introduced.

167 citations

Journal ArticleDOI
TL;DR: In this paper, an adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) were used for predicting the relative viscosity and electrical conductivity of the two types of hybrid ferrofluids.
Abstract: Recently, the suspension of hybrid nanoparticles in conventional fluids has been investigated as a technique for improving the thermophysical properties of nanofluids. The dearth of documentation on the trio influence of volume concentration, base fluid, and temperature on the electrical conductivity and viscosity of hybrid alumina–ferrofluids [Al2O3–Fe2O3 (25:75 mass%)] has led to this study. The effective viscosity and electrical conductivity of the deionized water (DW)-based and ethylene glycol (EG)–DW-based (50:50 vol%) hybrid alumina–ferrofluids were measured at temperatures of 20–50 °C and volume concentrations of 0.05–0.75%. Based on the importance of soft computing methods to engineers, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN) were used for predicting the relative viscosity and electrical conductivity of the two types of hybrid ferrofluids. The measured data for viscosity and electrical conductivity were used in the modeling. Model performances were evaluated using the root mean squared error index. Viscosity was enhanced by 3.23–43.64% and 2.79–49.38%, while electrical conductivity was increased by 163.37–1692.16% and 717.14–7618.89% for the DW- and EG–DIW-based hybrid ferrofluids, respectively, compared with the respective base fluids. Increasing volume concentration augmented the viscosity and electrical conductivity of all the hybrid alumina–ferrofluids, whereas a rise in temperature enhanced their electrical conductivity and detracted the viscosity. DW-based hybrid alumina–ferrofluid was observed to have a lower viscosity and higher electrical conductivity than the EG–DW-based counterpart. The results showed that the optimum ANN and ANFIS models have a maximum error of less than 4.5% and 3.9% for relative viscosity and electrical conductivity, respectively, which were lower than those proposed using regression analysis. With the hybrid alumina–ferrofluids possessing a lower viscosity relative to single-particle ferrofluids, they are recommended for engineering application.

154 citations

Journal ArticleDOI
TL;DR: In this paper, the free convection of Al2O3/water nano-fluid in a tilted enclosure is investigated and the effects of magnetic field strength, the variations of Rayleigh number (Ra), radiation parameter, nanoparticles concentration, inclination angle (IA), and aspect ratio (AR) are studied on the heat transfer rate (HTR) and irreversibilities.

126 citations


Cited by
More filters
01 Jan 2007

1,932 citations

Journal ArticleDOI
01 Oct 1971-Nature
TL;DR: Lipson and Steeple as mentioned in this paper interpreted X-ray powder diffraction patterns and found that powder-diffraction patterns can be represented by a set of 3-dimensional planes.
Abstract: Interpretation of X-ray Powder Diffraction Patterns . By H. Lipson and H. Steeple. Pp. viii + 335 + 3 plates. (Mac-millan: London; St Martins Press: New York, May 1970.) £4.

1,867 citations

01 Jan 2016
TL;DR: The numerical heat transfer and fluid flow is universally compatible with any devices to read and is available in the authors' digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you for reading numerical heat transfer and fluid flow. Maybe you have knowledge that, people have search numerous times for their favorite books like this numerical heat transfer and fluid flow, but end up in infectious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some malicious virus inside their computer. numerical heat transfer and fluid flow is available in our digital library an online access to it is set as public so you can get it instantly. Our books collection spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the numerical heat transfer and fluid flow is universally compatible with any devices to read.

1,531 citations

Journal Article
TL;DR: The International Nanofluid Property Benchmark Exercise (INPBE) as discussed by the authors was held in 1998, where the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or "nanofluids" was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady state methods, and optical methods.
Abstract: This article reports on the International Nanofluid Property Benchmark Exercise, or INPBE, in which the thermal conductivity of identical samples of colloidally stable dispersions of nanoparticles or “nanofluids,” was measured by over 30 organizations worldwide, using a variety of experimental approaches, including the transient hot wire method, steady-state methods, and optical methods. The nanofluids tested in the exercise were comprised of aqueous and nonaqueous basefluids, metal and metal oxide particles, near-spherical and elongated particles, at low and high particle concentrations. The data analysis reveals that the data from most organizations lie within a relatively narrow band (±10% or less) about the sample average with only few outliers. The thermal conductivity of the nanofluids was found to increase with particle concentration and aspect ratio, as expected from classical theory. There are (small) systematic differences in the absolute values of the nanofluid thermal conductivity among the various experimental approaches; however, such differences tend to disappear when the data are normalized to the measured thermal conductivity of the basefluid. The effective medium theory developed for dispersed particles by Maxwell in 1881 and recently generalized by Nan et al. [J. Appl. Phys. 81, 6692 (1997)], was found to be in good agreement with the experimental data, suggesting that no anomalous enhancement of thermal conductivity was achieved in the nanofluids tested in this exercise.

881 citations