scispace - formally typeset
Search or ask a question
Author

Mohsin Haji

Other affiliations: National Physical Laboratory
Bio: Mohsin Haji is an academic researcher from University of Glasgow. The author has contributed to research in topics: Laser & Semiconductor laser theory. The author has an hindex of 13, co-authored 40 publications receiving 1020 citations. Previous affiliations of Mohsin Haji include National Physical Laboratory.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented a visible light communication (VLC) system based on a single 50-μm gallium nitride light emitting diode (LED) with a 3-dB modulation bandwidth of at least 60 MHz.
Abstract: This letter presents a visible light communication (VLC) system based on a single 50- μm gallium nitride light emitting diode (LED). A device of this size exhibits a 3-dB modulation bandwidth of at least 60 MHz - significantly higher than commercially available white lighting LEDs. Orthogonal frequency division multiplexing is employed as a modulation scheme. This enables the limited modulation bandwidth of the device to be fully used. Pre- and postequalization techniques, as well as adaptive data loading, are successfully applied to achieve a demonstration of wireless communication at speeds exceeding 3 Gb/s. To date, this is the fastest wireless VLC system using a single LED.

680 citations

Journal ArticleDOI
TL;DR: An improved optical feedback architecture is proposed using an optical fiber loop delay as a cavity extension of the mode-locked laser to achieve a record low radio frequency linewidth of 192 Hz, promising for the development of high frequency optoelectronic oscillators.
Abstract: Optical self seeding feedback techniques can be used to improve the noise characteristics of passively mode-locked laser diodes. External cavities such as fiber optic cables can increase the memory of the phase and subsequently improve the timing jitter. In this work, an improved optical feedback architecture is proposed using an optical fiber loop delay as a cavity extension of the mode-locked laser. We investigate the effect of the noise reduction as a function of the loop length and feedback power. The well known composite cavity technique is also implemented for suppressing supermode noise artifacts presented due to harmonic mode locking effects. Using this method, we achieve a record low radio frequency linewidth of 192 Hz for any high frequency (>1 GHz) passively mode-locked laser to date (to the best of the authors’ knowledge), making it promising for the development of high frequency optoelectronic oscillators.

67 citations

Journal ArticleDOI
Lianping Hou1, Mohsin Haji1, Jehan Akbar1, Bocang Qiu, A. Catrina Bryce1 
TL;DR: A novel 40 GHz passively mode-locked AlGaInAs/InP 1.55 μm laser with a low divergence angle, timing jitter of 1.2 ps, and a radio frequency linewidth of 25 kHz is demonstrated.
Abstract: We demonstrate a novel (to the best of our knowledge) 40 GHz passively mode-locked AlGaInAs/InP 1.55 μm laser with a low divergence angle (12.7°×26.3°), timing jitter of 1.2 ps (10 kHz–100 MHz), and a radio frequency linewidth of 25 kHz.

54 citations

Journal ArticleDOI
TL;DR: A laterally coupled 1.55 μm AlGaInAs/InP distributed feedback laser monolithically integrated with a curved tapered optical amplifier providing an output power of 210 mW with single transverse and longitudinal mode operation exhibiting a record low linewidth of 64 kHz.
Abstract: We present a laterally coupled 1.55 μm AlGaInAs/InP distributed feedback laser monolithically integrated with a curved tapered optical amplifier, providing an output power of 210 mW with single transverse and longitudinal mode operation exhibiting a record low linewidth of 64 kHz.

44 citations

Journal ArticleDOI
Lianping Hou1, Mohsin Haji1, Jehan Akbar1, John H. Marsh1, A.C. Bryce1 
TL;DR: In this paper, a monolithic integration of four 1.50-μm range AlGaInAs/InP distributed feed-back lasers with a 4 × 1 multimode-interference optical combiner, a curved semiconductor optical amplifier and an electroabsorption modulator using relatively simple technologies-sidewall grating and quantum well intermixing-has been demonstrated.
Abstract: The monolithic integration of four 1.50-μm range AlGaInAs/InP distributed feed-back lasers with a 4 × 1 multimode-interference optical combiner, a curved semiconductor optical amplifier and an electroabsorption modulator using relatively simple technologies-sidewall grating and quantum well intermixing-has been demonstrated. The four channels span the wavelength range of 1530-1566 nm and can operate separately or simultaneously. The epitaxial structure was designed to produce a far field pattern at the output waveguide facet, which is as small as 21.2°× 25.1°, producing a coupling efficiency with an angled-end single mode fiber at twice that of a conventional device design.

29 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey provides a technology overview and review of existing literature of visible light communication and sensing and outlines important challenges that need to be addressed in order to design high-speed mobile networks using visible light Communication-VLC.
Abstract: The solid-state lighting is revolutionizing the indoor illumination. Current incandescent and fluorescent lamps are being replaced by the LEDs at a rapid pace. Apart from extremely high energy efficiency, the LEDs have other advantages such as longer lifespan, lower heat generation, and improved color rendering without using harmful chemicals. One additional benefit of LEDs is that they are capable of switching to different light intensity at a very fast rate. This functionality has given rise to a novel communication technology (known as visible light communication—VLC) where LED luminaires can be used for high speed data transfer. This survey provides a technology overview and review of existing literature of visible light communication and sensing. This paper provides a detailed survey of 1) visible light communication system and characteristics of its various components such as transmitter and receiver; 2) physical layer properties of visible light communication channel, modulation methods, and MIMO techniques; 3) medium access techniques; 4) system design and programmable platforms; and 5) visible light sensing and application such as indoor localization, gesture recognition, screen-camera communication, and vehicular networking. We also outline important challenges that need to be addressed in order to design high-speed mobile networks using visible light communication.

1,208 citations

Journal ArticleDOI
TL;DR: This paper will show how LiFi takes VLC further by using light emitting diodes (LEDs) to realise fully networked wireless systems to illustrate that LiFi attocells are not a theoretical concept any more, but at the point of real-world deployment.
Abstract: This paper attempts to clarify the difference between visible light communication (VLC) and light-fidelity (LiFi). In particular, it will show how LiFi takes VLC further by using light emitting diodes (LEDs) to realise fully networked wireless systems. Synergies are harnessed as luminaries become LiFi attocells resulting in enhanced wireless capacity providing the necessary connectivity to realise the Internet-of-Things, and contributing to the key performance indicators for the fifth generation of cellular systems (5G) and beyond. It covers all of the key research areas from LiFi components to hybrid LiFi/wireless fidelity (WiFi) networks to illustrate that LiFi attocells are not a theoretical concept any more, but at the point of real-world deployment.

760 citations

Journal ArticleDOI
TL;DR: This paper provides a comprehensive survey on VLC with an emphasis on challenges faced in indoor applications over the period 1979-2014.
Abstract: Visible Light Communication (VLC) is an emerging field in Optical Wireless Communication (OWC) which utilizes the superior modulation bandwidth of Light Emitting Diodes (LEDs) to transmit data. In modern day communication systems, the most popular frequency band is Radio Frequency (RF) mainly due to little interference and good coverage. However, the rapidly dwindling RF spectrum along with increasing wireless network traffic has substantiated the need for greater bandwidth and spectral relief. By combining illumination and communication, VLC provides ubiquitous communication while addressing the shortfalls and limitations of RF communication. This paper provides a comprehensive survey on VLC with an emphasis on challenges faced in indoor applications over the period 1979–2014. VLC is compared with infrared (IR) and RF systems and the necessity for using this beneficial technology in communication systems is justified. The advantages of LEDs compared to traditional lighting technologies are discussed and comparison is done between different types of LEDs currently available. Modulation schemes and dimming techniques for indoor VLC are discussed in detail. Methods needed to improve VLC system performance such as filtering, equalization, compensation, and beamforming are also presented. The recent progress made by various research groups in this field is discussed along with the possible applications of this technology. Finally, the limitations of VLC as well as the probable future directions are presented.

687 citations

Proceedings ArticleDOI
03 Dec 2015
TL;DR: Light-Fidelity takes visible light communication (VLC) further by using light emitting diodes (LEDs) to realise fully networked wireless systems for the Internet-of-Things (IoT), 5G and beyond.
Abstract: Light-Fidelity (LiFi) takes visible light communication (VLC) further by using light emitting diodes (LEDs) to realise fully networked wireless systems. Synergies are harnessed as lights become LiFi attocells resulting in enhanced wireless capacity for the Internet-of-Things (IoT), 5G and beyond.

527 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a technology overview and a review on optical wireless technologies, such as visible light communication, light fidelity, optical camera communication, free space optical communication, and light detection and ranging.
Abstract: New high-data-rate multimedia services and applications are evolving continuously and exponentially increasing the demand for wireless capacity of fifth-generation (5G) and beyond. The existing radio frequency (RF) communication spectrum is insufficient to meet the demands of future high-data-rate 5G services. Optical wireless communication (OWC), which uses an ultra-wide range of unregulated spectrum, has emerged as a promising solution to overcome the RF spectrum crisis. It has attracted growing research interest worldwide in the last decade for indoor and outdoor applications. OWC offloads huge data traffic applications from RF networks. A 100 Gb/s data rate has already been demonstrated through OWC. It offers services indoors as well as outdoors, and communication distances range from several nm to more than 10 000 km. This paper provides a technology overview and a review on optical wireless technologies, such as visible light communication, light fidelity, optical camera communication, free space optical communication, and light detection and ranging. We survey the key technologies for understanding OWC and present state-of-the-art criteria in aspects, such as classification, spectrum use, architecture, and applications. The key contribution of this paper is to clarify the differences among different promising optical wireless technologies and between these technologies and their corresponding similar existing RF technologies.

338 citations