scispace - formally typeset
Search or ask a question
Author

Mohsin Tanveer

Bio: Mohsin Tanveer is an academic researcher from University of Tasmania. The author has contributed to research in topics: Drought tolerance & Medicine. The author has an hindex of 30, co-authored 86 publications receiving 2922 citations. Previous affiliations of Mohsin Tanveer include Chinese Academy of Sciences & Huazhong Agricultural University.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
21 Oct 2019
TL;DR: In this paper, an attempt has been made to critically review the global usage of different pesticides and their major adverse impacts on ecosystem, which will provide guidance for a wide range of researchers in this area.
Abstract: Pesticides are extensively used in modern agriculture and are an effective and economical way to enhance the yield quality and quantity, thus ensuring food security for the ever-growing population around the globe. Approximately, 2 million tonnes of pesticides are utilized annually worldwide, where China is the major contributing country, followed by the USA and Argentina, which is increasing rapidly. However, by the year 2020, the global pesticide usage has been estimated to increase up to 3.5 million tonnes. Although pesticides are beneficial for crop production point of view, extensive use of pesticides can possess serious consequences because of their bio-magnification and persistent nature. Diverse pesticides directly or indirectly polluted air, water, soil and overall ecosystem which cause serious health hazard for living being. In the present manuscript, an attempt has been made to critically review the global usage of different pesticides and their major adverse impacts on ecosystem, which will provide guidance for a wide range of researchers in this area.

665 citations

Journal ArticleDOI
TL;DR: Drought-induced osmolyte accumulation and strong enzymatic and non-enzymatic defense systems prevented the severe damage in Dong Dan 80; nevertheless, negative effects of drought stress were more prominent in Run Nong 35.
Abstract: Consequences of drought stress in crop production systems are perhaps more deleterious than other abiotic stresses under changing climatic scenarios. Regulations of physio-biochemical responses of plants under drought stress can be used as markers for drought stress tolerance in selection and breeding. The present study was conducted to appraise the performance of three different maize hybrids (Dong Dan 80, Wan Dan 13, and Run Nong 35) under well-watered, low, moderate and SD conditions maintained at 100, 80, 60, and 40% of field capacity, respectively. Compared with well-watered conditions, drought stress caused oxidative stress by excessive production of reactive oxygen species (ROS) which led to reduced growth and yield formation in all maize hybrids; nevertheless, negative effects of drought stress were more prominent in Run Nong 35. Drought-induced osmolyte accumulation and strong enzymatic and non-enzymatic defense systems prevented the severe damage in Dong Dan 80. Overall performance of all maize hybrids under drought stress was recorded as: Dong Dan 80 > Wan Dan 13 > Run Nong 35 with 6.39, 7.35, and 16.55% yield reductions. Consequently, these biochemical traits and differential physiological responses might be helpful to develop drought tolerance genotypes that can withstand water-deficit conditions with minimum yield losses.

361 citations

Journal ArticleDOI
TL;DR: The highest grain production and better grain quality in biochar+P treatments might be due to enhanced photosynthesis, water use efficiency, and grain size, which compensated the adversities of high temperature stress.

230 citations

Journal ArticleDOI
TL;DR: It is concluded that sunflower responds to water stress by osmotic adjustments, turgor maintenance, carbon assimilation maintenance and hormonal regulations, needed for the sustainable improvement of sunflower achene yield and oil quality under drought stress.

221 citations

Journal ArticleDOI
TL;DR: The Wan Dan 13 was better able to alleviate Cd-induced oxidative damage which was attributed to more Cd accumulation in roots and higher antioxidant activities in this cultivar, suggesting that manipulation of these antioxidants and enhancing Cd collection in roots may lead to improvement in Cd stress tolerance.
Abstract: Increased cadmium (Cd) accumulation in soils has led to tremendous environmental problems, with pronounced effects on agricultural productivity. Present study investigated the effects of Cd stress imposed at various concentrations (0, 75, 150, 225, 300, 375 μM) on antioxidant activities, reactive oxygen species (ROS), Cd accumulation, and productivity of two maize (Zea mays L.) cultivars viz., Run Nong 35 and Wan Dan 13. Considerable variations in Cd accumulation and in behavior of antioxidants and ROS were observed under Cd stress in both maize cultivars, and such variations governed by Cd were concentration dependent. Exposure of plant to Cd stress considerably increased Cd concentration in all plant parts particularly in roots. Wan Dan 13 accumulated relatively higher Cd in root, stem, and leaves than Run Nong 35; however, in seeds, Run Nong 35 recorded higher Cd accumulation. All the Cd toxicity levels starting from 75 μM enhanced H2O2 and MDA concentrations and triggered electrolyte leakage in leaves of both cultivars, and such an increment was more in Run Nong 35. The ROS were scavenged by the enhanced activities of superoxide dismutase, peroxidase, catalase, ascorbate peroxidase, and glutathione peroxidase in response to Cd stress, and these antioxidant activities were higher in Wan Dan 13 compared with Run Nong 35 at all Cd toxicity levels. The grain yield of maize was considerably reduced particularly for Run Nong 35 under different Cd toxicity levels as compared with control. The Wan Dan 13 was better able to alleviate Cd-induced oxidative damage which was attributed to more Cd accumulation in roots and higher antioxidant activities in this cultivar, suggesting that manipulation of these antioxidants and enhancing Cd accumulation in roots may lead to improvement in Cd stress tolerance.

211 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have been presented here and a side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena.
Abstract: Abiotic stresses are one of the major constraints to crop production and food security worldwide. The situation has aggravated due to the drastic and rapid changes in global climate. Heat and drought stress are undoubtedly the two most important stresses having huge impact on growth and productivity of the crops. It is very important to understand the physiological, biochemical and ecological interventions related to these stresses for better management. A wide range of plant responses to these stresses could be generalized into morphological, physiological and biochemical responses. Interestingly, this review provides a detailed account of plant responses to heat and drought stresses with special focus on highlighting the commonalities and differences. Crop growth and yields are negatively affected by sub-optimal water supply and abnormal temperatures due to physical damages, physiological disruptions and biochemical changes. Both these stresses have multi-lateral impacts and therefore, complex in mechanistic action. A better understanding of plant responses to these stresses has pragmatic implication for remedies and management. A comprehensive account of conventional as well as modern approaches to deal with heat and drought stresses have also been presented here. A side-by-side critical discussion on salient responses and management strategies for these two important abiotic stresses provides a unique insight into the phenomena. A holistic approach taking into account the different management options to deal with heat and drought stress simultaneously could be a win-win approach in future.

1,354 citations

Journal ArticleDOI
TL;DR: This review has documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species.
Abstract: Global climate change and associated adverse abiotic stress conditions, such as drought, salinity, heavy metals, waterlogging, extreme temperatures, oxygen deprivation, etc., greatly influence plant growth and development, ultimately affecting crop yield and quality, as well as agricultural sustainability in general. Plant cells produce oxygen radicals and their derivatives, so-called reactive oxygen species (ROS), during various processes associated with abiotic stress. Moreover, the generation of ROS is a fundamental process in higher plants and employs to transmit cellular signaling information in response to the changing environmental conditions. One of the most crucial consequences of abiotic stress is the disturbance of the equilibrium between the generation of ROS and antioxidant defense systems triggering the excessive accumulation of ROS and inducing oxidative stress in plants. Notably, the equilibrium between the detoxification and generation of ROS is maintained by both enzymatic and nonenzymatic antioxidant defense systems under harsh environmental stresses. Although this field of research has attracted massive interest, it largely remains unexplored, and our understanding of ROS signaling remains poorly understood. In this review, we have documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species. In addition, state-of-the-art molecular approaches of ROS-mediated improvement in plant antioxidant defense during the acclimation process against abiotic stresses have also been discussed.

1,028 citations

Journal ArticleDOI
TL;DR: The biochemical and molecular mechanisms related to the activation of phenylpropanoid metabolism are discussed and phenolic-mediated stress tolerance in plants is described to provide updated and brand-new information about the response of phenolics under a challenging environment.
Abstract: Phenolic compounds are an important class of plant secondary metabolites which play crucial physiological roles throughout the plant life cycle. Phenolics are produced under optimal and suboptimal conditions in plants and play key roles in developmental processes like cell division, hormonal regulation, photosynthetic activity, nutrient mineralization, and reproduction. Plants exhibit increased synthesis of polyphenols such as phenolic acids and flavonoids under abiotic stress conditions, which help the plant to cope with environmental constraints. Phenylpropanoid biosynthetic pathway is activated under abiotic stress conditions (drought, heavy metal, salinity, high/low temperature, and ultraviolet radiations) resulting in accumulation of various phenolic compounds which, among other roles, have the potential to scavenge harmful reactive oxygen species. Deepening the research focuses on the phenolic responses to abiotic stress is of great interest for the scientific community. In the present article, we discuss the biochemical and molecular mechanisms related to the activation of phenylpropanoid metabolism and we describe phenolic-mediated stress tolerance in plants. An attempt has been made to provide updated and brand-new information about the response of phenolics under a challenging environment.

802 citations

Journal ArticleDOI
TL;DR: This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility.
Abstract: This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility. The outstanding functional properties of these materials stems from the relationship between their band structure and defect concentration, including charge carrier concentration and electronic conductivity character, which consequently affects their optoelectronic, optical, and plasmonic properties. This, combined with several metastable crystal phases and stoichiometries and the low energy of formation of defects, makes the reproducible synthesis of these materials, with tunable parameters, remarkable. Further to this, the review captures the progress of the hierarchical assembly of these NCs, which bridges the link between their discrete and collective properties. Their ubiquitous application set has cross-cut energy conversion (photovoltaics, photocatalysis, thermoelectrics), en...

636 citations