scispace - formally typeset
Search or ask a question
Author

Mojgan Ebadi

Bio: Mojgan Ebadi is an academic researcher from Islamic Azad University. The author has contributed to research in topics: Chlorophyll & Chronoamperometry. The author has an hindex of 3, co-authored 5 publications receiving 58 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Cyanobacteria, as one of the largest groups of phototrophic bacteria, have a high potential as an excellent source of fine chemicals and bioactive compounds, including lipid-like compounds, amino acid derivatives, proteins, and pigments.
Abstract: Cyanobacteria, as one of the largest groups of phototrophic bacteria, have a high potential as an excellent source of fine chemicals and bioactive compounds, including lipid-like compounds, amino acid derivatives, proteins, and pigments. This study aimed to synthesize ZnO nanoparticles using the cell extract of the cyanobacterium Nostoc sp. EA03 (CEN-ZnO NPs) through a rapid and eco-friendly approach. The biosynthesized nanoparticles, CEN-ZnO NPs, were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), zeta potential measurement, differential scanning calorimetry (DSC)/thermogravimetric analysis (TGA), FTIR, SEM, TEM, and EDX spectroscopy. The UV-Vis spectrum showed an absorption peak at 370 nm. The star-shaped CEN-ZnO NPs, as observed in the TEM and SEM images, had an average diameter of 50–80 nm. MIC and MBC values for E. coli, P. aeruginosa and S. aureus, were determined to be, respectively, 2000, 2000, and 64 μg ml−1, and 2500, 2500 and 128 μg ml−1. Further analysis through confocal laser scanning microscopy (CLSM) provided the observable confirmation that the CEN-ZnO NPs stunted the bacterial growth, preventing the formation of exopolysaccharides. The AFM analysis of surface topography of bacterial biofilm samples treated with CEN-ZnO NPs showed a rugged topography in some parts of the biofilm surface, indicating the destruction of biofilms. In contrast, in the untreated control samples, the structured biofilms were flat and prominent. MTT assay indicated that CEN-ZnO NPs had less cytotoxicity on the MRC-5 lung fibroblast cells compared with the cancerous treated A549 cells. As the concentration of the CEN-ZnO NPs increased, the amount of ROS produced in the tested bacterial strains also increased. Analyzing the data obtained from flow cytometry showed that the higher concentrations of CEN-ZnO NPs lead to a reduction in the viability of P. aeruginosa PAO1, E. coli and S. aureus. The biosynthesized ZnO nanoparticles using Nostoc cell extracts exhibited different attributes, inspiring enough to be considered for further investigation.

68 citations

Journal ArticleDOI
TL;DR: In this paper, a Co3O4 photocathodes with different amounts of CuO, were synthesized on fluorine doped tin oxide (FTO) via electrodeposition from a chloride bath containing suspended starch particles.
Abstract: p-Type Co3O4 photocathodes with different amounts of CuO, were synthesized on fluorine doped tin oxide (FTO) via electrodeposition from a chloride bath containing suspended starch particles. All of the fabricated samples were photoresponsive toward water splitting in 0.5 M Na2SO4 under simulated sun-light. The PEC performance was evaluated using LSPV, chronoamperometry, and EIS techniques. The samples fabricated via the electrodeposition/anodizing/annealing process showed greater photocurrent response compared to the electrodeposition/annealing process. Among all the samples, the sample with an atomic composition% of Co: 24.9, Cu: 25.0 and O: 50.1 showed an optimum photocurrent response (∼6.5 mA cm−2 vs. SCE at −0.3 V). The structure, morphology/composition and optical response were characterized by XRD, FESEM/EDX and UV-Vis techniques, respectively.

23 citations

Journal ArticleDOI
TL;DR: FT-IR spectroscopy profile of the Cd treated sample as demonstrated in confirmation of the benefits of various functional groups of proteins and polysaccharides of cyanobacterial biomass, involved in surface binding of Cd, showed a significant increase of MDA in the first 24h after exposure to the different concentrations of C d.

13 citations

Journal ArticleDOI
TL;DR: The cefazolin-loaded niosome could be considered as a promising candidate for the treatment of biofilm-mediated infections of MRSA.
Abstract: The ability of biofilm formation in methicillin-resistant Staphylococcus aureus (MRSA) causes significant mortality and morbidity in wound infections. Nanoparticles because of the drug concentration increment at the point of contact of nanoparticles and bacteria, and slower release of the drug at the desired location are considered as proper tools to overcome the therapeutic problem of antimicrobial-resistant infections. This study was aimed to evaluate the anti-biofilm activity of cefazolin-loaded nanoparticles against MRSA isolates. The 27 clinical isolates of MRSA were collected from patients with pressure sores and diabetic ulcers referred to Loghman Hospital in Tehran-Iran. MRSA isolates were detected by polymerase chain reaction (PCR) and biochemical tests. Cefazolin-loaded niosome was synthesized using the thin-film hydration method and were characterized by zeta potential measurement and transmission electron microscopy (TEM). The round-shaped cefazolin-loaded niosomes had a diameter of 100 nm and a -63 mV zeta potential. The cefazolin-containing niosomes removed 1, 3, and 5 d old biofilms at the concentration of 128 µg ml-1, 128 µg ml-1, and 256 µg ml-1, respectively. Histological results indicated that BALB/c mice receiving cefazolin-loaded niosomes were treated effectively faster than those treated by cefazolin or untreated group. In conclusion, the cefazolin-loaded niosome could be considered as a promising candidate for the treatment of biofilm-mediated infections of MRSA.

12 citations

Journal ArticleDOI
TL;DR: In this paper, a new approach for the biosynthesis of zinc oxide nanoparticles using a newly characterized cyanobacterial strain Desertifilum sp. EAZ03 was used for the synthesis of ZnO NPs.
Abstract: AIMS The use of cyanobacterial cell extracts for the synthesis of zinc oxide nanoparticles (ZnO NPs) seems to be superior to other methods of synthesis because of its a green, environmentally friendly and low-cost approach. In this study, the cell extract of a newly characterized cyanobacterial strain Desertifilum sp. EAZ03 was used for the biosynthesis of ZnO NPs. The antimicrobial, antibiofilm and anticancer activities of the biosynthesized ZnO NPs (hereinafter referred to as CED-ZnO NPs) were examined as well. METHODS AND RESULTS UV-Vis spectroscopy analysis of CED-ZnO NPs showed an absorbance band at 364 nm, and powder X-ray diffraction analysis confirmed the purity of the synthesized nanoparticles. The analyses of scanning electron microscopy and transmission electron microscopy images revealed that CED-ZnO NPs were rod-shaped with a size of 88 nm. The study of the biological features of CED-ZnO NPs showed a significant antimicrobial potential against the bacterial strains tested. CED-ZnO NPs were able to impede the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa up to 80%, 89% and 85%, respectively. The nanoparticles also showed 69%, 70% and 62% degrading activity against S. aureus, E. coli and P. aeruginosa 1-day-old biofilms, respectively. The antibiofilm activity of the synthesized nanoparticles was investigated by confocal laser scanning microscopy. The MTT assay showed that CED-ZnO NPs, at a concentration of 100 μg/ml, had less cytotoxicity towards normal lung (MRC-5) cells, at the half, compared to cancerous lung alveolar epithelial (A549) cells. The minimum inhibitory concentration and minimum bactericidal concentration values of CED-ZnO NPs against E. coli, P. aeruginosa and S. aureus were 1500, 2000 and 32 μg/ml, and 2500, 3500 and 64 μg/ml, respectively. CONCLUSIONS The multifunctional CED-ZnO NPs seem to be promising for possible applications in the therapeutic and pharmaceutical industries. SIGNIFICANCE AND IMPACT OF THE STUDY This study proposes a new approach for the biosynthesis of zinc oxide nanoparticles using a newly characterized cyanobacterial strain Desertifilum sp. EAZ03. The considerable antimicrobial, antibiofilm and anticancer activities of the biosynthesized zinc oxide nanoparticles further emphasize the emerging role of microbial systems in the green synthesis of metal oxide nanoparticles.

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the recent progress using metal oxides as photoelectrodes and co-catalysts for PEC water splitting is summarized and their performance, limitations and potentials are also discussed.
Abstract: Photoelectrochemical (PEC) water splitting represents an environmentally friendly and sustainable method to obtain hydrogen fuel. Semiconductor materials as the central components in PEC water splitting cells have decisive influences on the device's solar-to-hydrogen conversion efficiency. Among semiconductors, metal oxides have received a lot of attention due to their outstanding (photo)-electrochemical stability, low cost, favorable band edge positions and wide distribution of bandgaps. In the past decades, significant processes have been made in developing metal oxide nanomaterials for PEC water splitting. In this review, the recent progress using metal oxides as photoelectrodes and co-catalysts for PEC water splitting is summarized. Their performance, limitations and potentials are also discussed. Last, the key challenges and opportunities in the development and implementation of metal oxide nanomaterials for PEC water splitting are discussed.

391 citations

Journal ArticleDOI
TL;DR: In this article, a broad spectrum of applications pertinent to graphitic carbon nitride (g-C3N4) based electrodes and their applications in solar cells, electrocatalysts and supercapacitors are reviewed.
Abstract: Graphitic carbon nitride (g-C3N4) has emerged as one of the most promising photocatalysts due to its metal-free nature, abundance of raw material, and thermal physical–chemical stability. The breakthrough research studies in recent years have mostly been concentrated on the engineering of the intrinsic and morphological properties of g-C3N4-based photocatalysts in the framework of powder suspensions for artificial photosynthesis and environmental remediation. However, practical applications of g-C3N4-based electrodes and devices are still in the early stages of development due to challenging fabrication methods of g-C3N4 thin films. This review addresses the classification of diverse techniques to deposit g-C3N4-based thin films and explores a broad spectrum of applications pertinent to g-C3N4-based electrodes. Although this paper is principally focused on photoelectrochemical water splitting, other emerging applications of g-C3N4 in solar cells, electrocatalysts and supercapacitors are also reviewed. Lastly, further suggestions are posited for other potential applications, challenges and future orientations.

217 citations

Journal ArticleDOI
TL;DR: In this paper, zinc oxide nanoparticles (ZnO-NPs) were successfully fabricated through harnessing of metabolites present in the cell filtrate of a newly isolated and identified microalga Arthrospira platensis (Class: Cyanophyceae).
Abstract: In this study, zinc oxide nanoparticles (ZnO-NPs) were successfully fabricated through the harnessing of metabolites present in the cell filtrate of a newly isolated and identified microalga Arthrospira platensis (Class: Cyanophyceae). The formed ZnO-NPs were characterized by UV–Vis spectroscopy, Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Data showed the efficacy of cyanobacterial metabolites in fabricating spherical, crystallographic ZnO-NPs with a size ≈30.0 to 55.0 nm at a wavelength of 370 nm. Moreover, FT-IR analysis showed varied absorption peaks related to nanoparticle formation. XPS analysis confirms the presence of Zn(II)O at different varied bending energies. Data analyses exhibit that the activities of biosynthesized ZnO-NPs were dose-dependent. Their application as an antimicrobial agent was examined and formed clear zones, 24.1 ± 0.3, 21.1 ± 0.06, 19.1 ± 0.3, 19.9 ± 0.1, and 21.6 ± 0.6 mm, at 200 ppm against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida albicans, respectively, and these activities were reduced as the NPs concentration decreased. The minimum inhibitory concentration (MIC) values were determined as 50 ppm for S. aureus, 25 ppm for P. aeruginosa, and 12.5 ppm for B. subtilis, E. coli, and C. albicans. More interestingly, ZnO-NPs exhibit high in vitro cytotoxic efficacy against cancerous (Caco-2) (IC50 = 9.95 ppm) as compared with normal (WI38) cell line (IC50 = 53.34 ppm).

124 citations

Journal ArticleDOI
TL;DR: It was indicated that removal of doxycycline from salt-containing water with moderate ionic strengths was quite feasible and the sorption data was well interpreted by the Longmuir model.

107 citations

01 Feb 2019
TL;DR: A 2018 retrospective analysis of Medicare beneficiaries identified that ∼8.2 million people had wounds with or without infections as discussed by the authors, and the highest expenses were for surgical wounds followed by diabetic foot ulcers, with a higher trend toward costs associated with outpatient wound care compared with inpatient.
Abstract: Significance: A 2018 retrospective analysis of Medicare beneficiaries identified that ∼8.2 million people had wounds with or without infections. Medicare cost estimates for acute and chronic wound treatments ranged from $28.1 billion to $96.8 billion. Highest expenses were for surgical wounds followed by diabetic foot ulcers, with a higher trend toward costs associated with outpatient wound care compared with inpatient. Increasing costs of health care, an aging population, recognition of difficult-to-treat infection threats such as biofilms, and the continued threat of diabetes and obesity worldwide make chronic wounds a substantial clinical, social, and economic challenge. Recent Advances: Chronic wounds are not a problem in an otherwise healthy population. Underlying conditions ranging from malnutrition, to stress, to metabolic syndrome, predispose patients to chronic, nonhealing wounds. From an economic point of view, the annual wound care products market is expected to reach $15-22 billion by 2024. The National Institutes of Health's (NIH) Research Portfolio Online Reporting Tool (RePORT) now lists wounds as a category. Future Directions: A continued rise in the economic, clinical, and social impact of wounds warrants a more structured approach and proportionate investment in wound care, education, and related research.

95 citations