scispace - formally typeset
Search or ask a question
Author

Mojtaba Ahmadieh Khanesar

Bio: Mojtaba Ahmadieh Khanesar is an academic researcher from University of Nottingham. The author has contributed to research in topics: Fuzzy logic & Fuzzy control system. The author has an hindex of 23, co-authored 96 publications receiving 1695 citations. Previous affiliations of Mojtaba Ahmadieh Khanesar include K.N.Toosi University of Technology & Semnan University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a direct model reference fuzzy controller is proposed for the control of a nonlinear system over a network subject to variable network induced time delay, which can be applied to nonlinear systems with a little knowledge about the structure of the system and the values of its parameters.
Abstract: This study presents a novel direct model reference fuzzy controller as applied to the control of a nonlinear system over a network subject to variable network induced time delay. The proposed method uses Pade approximation to cope with this condition. Unlike most approaches seen in the literature, which are mostly model based and necessitate the solution of a set of linear matrix inequalities, the proposed approach is online and can be applied to nonlinear systems with a little knowledge about the structure of the system and the values of its parameters. The stability of the proposed method is proved using an appropriate Lyapunov function. The approach is implemented and tested on a dc motor with nonlinear characteristics and nonlinear state-dependent disturbance. It is shown that it is capable of controlling the system over a network subject to variable network-induced time delay with bounded tracking error. In addition, the effect of packet losses is considered in the implementation part and it is seen that the system can be controlled under these conditions too.

35 citations

Journal ArticleDOI
01 Jul 2016
TL;DR: In this review, the state of the art of the three major classes of optimization methods are investigated: derivative-based (computational approaches), derivative-free (heuristic methods) and hybrid methods which are the fusion of both the derivative- free and derivative- based methods.
Abstract: Graphical abstractDisplay Omitted HighlightsLearning algorithms of T2FLS are reviewed.Hybrid learning of parameters are reviewed particularly.The learning algorithms for T2FLS are divided into three categories.Comparison of the three categories is discussed at the end. Type-2 fuzzy logic systems have extensively been applied to various engineering problems, e.g. identification, prediction, control, pattern recognition, etc. in the past two decades, and the results were promising especially in the presence of significant uncertainties in the system. In the design of type-2 fuzzy logic systems, the early applications were realized in a way that both the antecedent and consequent parameters were chosen by the designer with perhaps some inputs from some experts. Since 2000s, a huge number of papers have been published which are based on the adaptation of the parameters of type-2 fuzzy logic systems using the training data either online or offline. Consequently, the major challenge was to design these systems in an optimal way in terms of their optimal structure and their corresponding optimal parameter update rules. In this review, the state of the art of the three major classes of optimization methods are investigated: derivative-based (computational approaches), derivative-free (heuristic methods) and hybrid methods which are the fusion of both the derivative-free and derivative-based methods.

34 citations

Journal ArticleDOI
TL;DR: Pareto based optimization algorithms, namely non-dominated sorting algorithm, multiobjectives particle swarm optimization and multiobjective evolutionary algorithm based on decomposition, are utilized to obtain the Pareto optimal front in which these objective functions are optimized simultaneously.

29 citations

Journal ArticleDOI
TL;DR: A novel optimization algorithm based on competitive behavior of various creatures such as birds, cats, bees and ants to survive in nature and is an efficient method in finding the solution of optimization problems.
Abstract: This paper presents a novel optimization algorithm based on competitive behavior of various creatures such as birds, cats, bees and ants to survive in nature. In the proposed method, a competition is designed among all aforementioned creatures according to their performances. Every optimization algorithm can be appropriate for some objective functions and may not be appropriate for another. Due to the interaction between different optimization algorithms proposed in this paper, the algorithms acting based on the behavior of these creatures can compete each other for the best. The rules of competition between the optimization methods are based on imperialist competitive algorithm. Imperialist competitive algorithm decides which of the algorithms can survive and which of them must be extinct. In order to have a comparison to well-known heuristic global optimization methods, some simulations are carried out on some benchmark test functions with different and high dimensions. The obtained results shows that the proposed competition based optimization algorithm is an efficient method in finding the solution of optimization problems.

29 citations

Journal ArticleDOI
TL;DR: Intensive simulations are performed to illustrate the applicability of the proposed controller which includes the tracking of a three-dimensional trajectory by the UAV subject to time-varying wind conditions and show the efficiency of the predicted learning algorithm, especially in real-time control systems because of its computational efficiency.
Abstract: A learning control strategy is preferred for the control and guidance of a fixed-wing unmanned aerial vehicle to deal with lack of modeling and flight uncertainties. For learning the plant model as well as changing working conditions online, a fuzzy neural network (FNN) is used in parallel with a conventional P (proportional) controller. Among the learning algorithms in the literature, a derivative-free one, sliding mode control (SMC) theory-based learning algorithm, is preferred as it has been proved to be computationally efficient in real-time applications. Its proven robustness and finite time converging nature make the learning algorithm appropriate for controlling an unmanned aerial vehicle as the computational power is always limited in unmanned aerial vehicles (UAVs). The parameter update rules and stability conditions of the learning are derived, and the proof of the stability of the learning algorithm is shown by using a candidate Lyapunov function. Intensive simulations are performed to illustrate the applicability of the proposed controller which includes the tracking of a three-dimensional trajectory by the UAV subject to time-varying wind conditions. The simulation results show the efficiency of the proposed control algorithm, especially in real-time control systems because of its computational efficiency.

29 citations


Cited by
More filters
Journal Article
TL;DR: In this paper, two major figures in adaptive control provide a wealth of material for researchers, practitioners, and students to enhance their work through the information on many new theoretical developments, and can be used by mathematical control theory specialists to adapt their research to practical needs.
Abstract: This book, written by two major figures in adaptive control, provides a wealth of material for researchers, practitioners, and students. While some researchers in adaptive control may note the absence of a particular topic, the book‘s scope represents a high-gain instrument. It can be used by designers of control systems to enhance their work through the information on many new theoretical developments, and can be used by mathematical control theory specialists to adapt their research to practical needs. The book is strongly recommended to anyone interested in adaptive control.

1,814 citations

01 Jan 1996

1,282 citations

Journal ArticleDOI
TL;DR: Results prove the capability of the proposed binary version of grey wolf optimization (bGWO) to search the feature space for optimal feature combinations regardless of the initialization and the used stochastic operators.

958 citations

Journal ArticleDOI
01 May 2014
TL;DR: Experiments on twenty benchmark datasets show that PSO with the new initialisation strategies and/or the new updating mechanisms can automatically evolve a feature subset with a smaller number of features and higher classification performance than using all features.
Abstract: In classification, feature selection is an important data pre-processing technique, but it is a difficult problem due mainly to the large search space. Particle swarm optimisation (PSO) is an efficient evolutionary computation technique. However, the traditional personal best and global best updating mechanism in PSO limits its performance for feature selection and the potential of PSO for feature selection has not been fully investigated. This paper proposes three new initialisation strategies and three new personal best and global best updating mechanisms in PSO to develop novel feature selection approaches with the goals of maximising the classification performance, minimising the number of features and reducing the computational time. The proposed initialisation strategies and updating mechanisms are compared with the traditional initialisation and the traditional updating mechanism. Meanwhile, the most promising initialisation strategy and updating mechanism are combined to form a new approach (PSO(4-2)) to address feature selection problems and it is compared with two traditional feature selection methods and two PSO based methods. Experiments on twenty benchmark datasets show that PSO with the new initialisation strategies and/or the new updating mechanisms can automatically evolve a feature subset with a smaller number of features and higher classification performance than using all features. PSO(4-2) outperforms the two traditional methods and two PSO based algorithm in terms of the computational time, the number of features and the classification performance. The superior performance of this algorithm is due mainly to both the proposed initialisation strategy, which aims to take the advantages of both the forward selection and backward selection to decrease the number of features and the computational time, and the new updating mechanism, which can overcome the limitations of traditional updating mechanisms by taking the number of features into account, which reduces the number of features and the computational time.

457 citations

Journal ArticleDOI
TL;DR: In this survey, fourteen new and outstanding metaheuristics that have been introduced for the last twenty years other than the classical ones such as genetic, particle swarm, and tabu search are distinguished.

450 citations