scispace - formally typeset
Search or ask a question
Author

Moni Naor

Other affiliations: IBM, Stanford University, University of California, Berkeley  ...read more
Bio: Moni Naor is an academic researcher from Weizmann Institute of Science. The author has contributed to research in topics: Encryption & Cryptography. The author has an hindex of 102, co-authored 338 publications receiving 47090 citations. Previous affiliations of Moni Naor include IBM & Stanford University.


Papers
More filters
DOI
01 Apr 2020
TL;DR: It is shown how differentially private and untrackable mechanisms can be combined to achieve a bound for the problem of detecting when a certain user changed their private value, and that this bound is tight.
Abstract: We present a new concern when collecting data from individuals that arises from the attempt to mitigate privacy leakage in multiple reporting: tracking of users participating in the data collection via the mechanisms added to provide privacy. We present several definitions for untrackable mechanisms, inspired by the differential privacy framework. Specifically, we define the trackable parameter as the log of the maximum ratio between the probability that a set of reports originated from a single user and the probability that the same set of reports originated from two users (with the same private value). We explore the implications of this new definition. We show how differentially private and untrackable mechanisms can be combined to achieve a bound for the problem of detecting when a certain user changed their private value. Examining Google’s deployed solution for everlasting privacy, we show that RAPPOR (Erlingsson et al. ACM CCS, 2014) is trackable in our framework for the parameters presented in their paper. We analyze a variant of randomized response for collecting statistics of single bits, Bitwise Everlasting Privacy, that achieves good accuracy and everlasting privacy, while only being reasonably untrackable, specifically grows linearly in the number of reports. For collecting statistics about data from larger domains (for histograms and heavy hitters) we present a mechanism that prevents tracking for a limited number of responses. We also present the concept of Mechanism Chaining, using the output of one mechanism as the input of another, in the scope of Differential Privacy, and show that the chaining of an e₁-LDP mechanism with an e₂-LDP mechanism is ln (e^{e₁+e₂} + 1)/(e^e₁ + e^e₂)-LDP and that this bound is tight.

1 citations

Posted Content
TL;DR: In this article, the authors consider the case of a memory bounded Guesser that has $m < n$ memory bits and show that the performance of such a Guesser depends much on the behavior of the Dealer.
Abstract: A card guessing game is played between two players, Guesser and Dealer. At the beginning of the game, the Dealer holds a deck of $n$ cards (labeled $1, ..., n$). For $n$ turns, the Dealer draws a card from the deck, the Guesser guesses which card was drawn, and then the card is discarded from the deck. The Guesser receives a point for each correctly guessed card. With perfect memory, a Guesser can keep track of all cards that were played so far and pick at random a card that has not appeared so far, yielding in expectation $\ln n$ correct guesses. With no memory, the best a Guesser can do will result in a single guess in expectation. We consider the case of a memory bounded Guesser that has $m < n$ memory bits. We show that the performance of such a memory bounded Guesser depends much on the behavior of the Dealer. In more detail, we show that there is a gap between the static case, where the Dealer draws cards from a properly shuffled deck or a prearranged one, and the adaptive case, where the Dealer draws cards thoughtfully, in an adversarial manner. Specifically: 1. We show a Guesser with $O(\log^2 n)$ memory bits that scores a near optimal result against any static Dealer. 2. We show that no Guesser with $m$ bits of memory can score better than $O(\sqrt{m})$ correct guesses, thus, no Guesser can score better than $\min \{\sqrt{m}, \ln n\}$, i.e., the above Guesser is optimal. 3. We show an efficient adaptive Dealer against which no Guesser with $m$ memory bits can make more than $\ln m + 2 \ln \log n + O(1)$ correct guesses in expectation. These results are (almost) tight, and we prove them using compression arguments that harness the guessing strategy for encoding.

1 citations

Patent
19 Jan 2017
TL;DR: The searchable symmetric encryption (SSE) method as discussed by the authors is a searchable encryption method for searchable searchable databases. But it is not suitable for non-structured databases, as it requires the storage of the memory addresses in a non-transient computer-readable memory.
Abstract: A method for searchable symmetric encryption. The method includes: accessing a computerized database that comprises keyword lists, each of the keyword lists comprising memory addresses of electronic documents that all contain a respective keyword; binning the memory addresses by performing balanced allocation of the memory addresses into ordered bins, such that at least some of the ordered bins each contains memory addresses of electronic documents that contain different keywords; encrypting each of the memory addresses with an encryption key that is derived from the keyword of the respective memory address; and storing the ordered bins at consecutive locations in a non-transient computer-readable memory, wherein the consecutive locations preserve the order of the ordered bins.

1 citations

Proceedings ArticleDOI
04 Oct 2010
TL;DR: This talk will explore a connection between traitor tracing schemes and the problem of sanitizing data to remove personal information while allowing statistically meaningful information to be released.
Abstract: In this talk I will explore a connection between traitor tracing schemes and the problem of sanitizing data to remove personal information while allowing statistically meaningful information to be released It is based on joint work with Cynthia Dwork, Omer Reingold, Guy N Rothblum and Salil Vadhan [5]

1 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Book
01 Jan 1996
TL;DR: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols.
Abstract: From the Publisher: A valuable reference for the novice as well as for the expert who needs a wider scope of coverage within the area of cryptography, this book provides easy and rapid access of information and includes more than 200 algorithms and protocols; more than 200 tables and figures; more than 1,000 numbered definitions, facts, examples, notes, and remarks; and over 1,250 significant references, including brief comments on each paper.

13,597 citations

Patent
30 Sep 2010
TL;DR: In this article, the authors proposed a secure content distribution method for a configurable general-purpose electronic commercial transaction/distribution control system, which includes a process for encapsulating digital information in one or more digital containers, a process of encrypting at least a portion of digital information, a protocol for associating at least partially secure control information for managing interactions with encrypted digital information and/or digital container, and a process that delivering one or multiple digital containers to a digital information user.
Abstract: PROBLEM TO BE SOLVED: To solve the problem, wherein it is impossible for an electronic content information provider to provide commercially secure and effective method, for a configurable general-purpose electronic commercial transaction/distribution control system. SOLUTION: In this system, having at least one protected processing environment for safely controlling at least one portion of decoding of digital information, a secure content distribution method comprises a process for encapsulating digital information in one or more digital containers; a process for encrypting at least a portion of digital information; a process for associating at least partially secure control information for managing interactions with encrypted digital information and/or digital container; a process for delivering one or more digital containers to a digital information user; and a process for using a protected processing environment, for safely controlling at least a portion of the decoding of the digital information. COPYRIGHT: (C)2006,JPO&NCIPI

7,643 citations

Proceedings ArticleDOI
22 Jan 2006
TL;DR: Some of the major results in random graphs and some of the more challenging open problems are reviewed, including those related to the WWW.
Abstract: We will review some of the major results in random graphs and some of the more challenging open problems. We will cover algorithmic and structural questions. We will touch on newer models, including those related to the WWW.

7,116 citations

Book ChapterDOI
19 Aug 2001
TL;DR: This work proposes a fully functional identity-based encryption scheme (IBE) based on the Weil pairing that has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational Diffie-Hellman problem.
Abstract: We propose a fully functional identity-based encryption scheme (IBE). The scheme has chosen ciphertext security in the random oracle model assuming an elliptic curve variant of the computational Diffie-Hellman problem. Our system is based on the Weil pairing. We give precise definitions for secure identity based encryption schemes and give several applications for such systems.

7,083 citations