scispace - formally typeset
Search or ask a question
Author

Monica Ardura

Other affiliations: Baylor University
Bio: Monica Ardura is an academic researcher from University of Texas Southwestern Medical Center. The author has contributed to research in topics: Gene expression profiling & Respiratory tract infections. The author has an hindex of 1, co-authored 1 publications receiving 448 citations. Previous affiliations of Monica Ardura include Baylor University.

Papers
More filters
Journal ArticleDOI
01 Mar 2007-Blood
TL;DR: In this paper, gene expression profiles were obtained for 131 peripheral blood samples from pediatric patients with acute infections caused by influenza A virus, Gram-negative (Escherichia coli) or Gram-positive (Staphylococcus aureus and Streptococcus pneumoniae) bacteria.

472 citations


Cited by
More filters
Journal ArticleDOI
19 Aug 2010-Nature
TL;DR: A hitherto underappreciated role of type I IFN-αβ signalling in the pathogenesis of TB is demonstrated, which has implications for vaccine and therapeutic development and a broad range of transcriptional biomarkers with potential as diagnostic and prognostic tools to combat the TB epidemic are provided.
Abstract: Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis, is a major cause of morbidity and mortality worldwide. Efforts to control it are hampered by difficulties with diagnosis, prevention and treatment. Most people infected with M. tuberculosis remain asymptomatic, termed latent TB, with a 10% lifetime risk of developing active TB disease. Current tests, however, cannot identify which individuals will develop disease. The immune response to M. tuberculosis is complex and incompletely characterized, hindering development of new diagnostics, therapies and vaccines. Here we identify a whole-blood 393 transcript signature for active TB in intermediate and high-burden settings, correlating with radiological extent of disease and reverting to that of healthy controls after treatment. A subset of patients with latent TB had signatures similar to those in patients with active TB. We also identify a specific 86-transcript signature that discriminates active TB from other inflammatory and infectious diseases. Modular and pathway analysis revealed that the TB signature was dominated by a neutrophil-driven interferon (IFN)-inducible gene profile, consisting of both IFN-gamma and type I IFN-alphabeta signalling. Comparison with transcriptional signatures in purified cells and flow cytometric analysis suggest that this TB signature reflects changes in cellular composition and altered gene expression. Although an IFN-inducible signature was also observed in whole blood of patients with systemic lupus erythematosus (SLE), their complete modular signature differed from TB, with increased abundance of plasma cell transcripts. Our studies demonstrate a hitherto underappreciated role of type I IFN-alphabeta signalling in the pathogenesis of TB, which has implications for vaccine and therapeutic development. Our study also provides a broad range of transcriptional biomarkers with potential as diagnostic and prognostic tools to combat the TB epidemic.

1,588 citations

Journal ArticleDOI
TL;DR: This article used a system biology approach to identify early gene signatures that predicted immune responses in humans vaccinated with the yellow fever vaccine YF-17D, with up to 90% accuracy in an independent, blinded trial.
Abstract: A major challenge in vaccinology is to prospectively determine vaccine efficacy. Here we have used a systems biology approach to identify early gene 'signatures' that predicted immune responses in humans vaccinated with yellow fever vaccine YF-17D. Vaccination induced genes that regulate virus innate sensing and type I interferon production. Computational analyses identified a gene signature, including complement protein C1qB and eukaryotic translation initiation factor 2 alpha kinase 4-an orchestrator of the integrated stress response-that correlated with and predicted YF-17D CD8(+) T cell responses with up to 90% accuracy in an independent, blinded trial. A distinct signature, including B cell growth factor TNFRS17, predicted the neutralizing antibody response with up to 100% accuracy. These data highlight the utility of systems biology approaches in predicting vaccine efficacy.

1,004 citations

Journal ArticleDOI
18 Jul 2008-Immunity
TL;DR: This work designed a strategy for microarray analysis that is based on the identification of transcriptional modules formed by genes coordinately expressed in multiple disease data sets that provide a stable framework for the visualization and functional interpretation of microarray data.

610 citations

Journal ArticleDOI
TL;DR: The current diagnostic landscape, including unmet needs and emerging technologies, and the challenges to the development and clinical integration of improved tests are reviewed, and recommendations that address a host of identified barriers are presented.
Abstract: In this IDSA policy paper, we review the current diagnostic landscape, including unmet needs and emerging technologies, and assess the challenges to the development and clinical integration of improved tests. To fulfill the promise of emerging diagnostics, IDSA presents recommendations that address a host of identified barriers. Achieving these goals will require the engagement and coordination of a number of stakeholders, including Congress, funding and regulatory bodies, public health agencies, the diagnostics industry, healthcare systems, professional societies, and individual clinicians.

491 citations

Journal ArticleDOI
TL;DR: Novel approaches to sepsis promise to transform sePSis from a physiologic syndrome into a group of distinct biochemical disorders and help in the development of better diagnostic tools and effective adjunctive sepsi therapies.
Abstract: SUMMARY Sepsis is among the most common causes of death in hospitals. It arises from the host response to infection. Currently, diagnosis relies on nonspecific physiological criteria and culture-based pathogen detection. This results in diagnostic uncertainty, therapeutic delays, the mis- and overuse of antibiotics, and the failure to identify patients who might benefit from immunomodulatory therapies. There is a need for new sepsis biomarkers that can aid in therapeutic decision making and add information about screening, diagnosis, risk stratification, and monitoring of the response to therapy. The host response involves hundreds of mediators and single molecules, many of which have been proposed as biomarkers. It is, however, unlikely that one single biomarker is able to satisfy all the needs and expectations for sepsis research and management. Among biomarkers that are measurable by assays approved for clinical use, procalcitonin (PCT) has shown some usefulness as an infection marker and for antibiotic stewardship. Other possible new approaches consist of molecular strategies to improve pathogen detection and molecular diagnostics and prognostics based on transcriptomic, proteomic, or metabolic profiling. Novel approaches to sepsis promise to transform sepsis from a physiologic syndrome into a group of distinct biochemical disorders and help in the development of better diagnostic tools and effective adjunctive sepsis therapies.

429 citations