scispace - formally typeset
Search or ask a question
Author

Mónica Giménez-Marqués

Bio: Mónica Giménez-Marqués is an academic researcher from University of Valencia. The author has contributed to research in topics: Spin crossover & Spin transition. The author has an hindex of 19, co-authored 49 publications receiving 1637 citations. Previous affiliations of Mónica Giménez-Marqués include Leiden University & Polytechnic University of Valencia.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of nanostructured metal-organic frameworks (nanoMOFs) and their related biomedical applications is presented, covering all aspects concerning the various synthetic methods reported so far, as well as the shaping and surface engineering routes required for their use in biomedicine.

451 citations

Journal ArticleDOI
TL;DR: A spin-crossover Fe(II) coordination polymer with no permanent channels that selectively sorbs CO2 over N2 and modifies the spin transition, producing a 9 K increase in T1/2.
Abstract: We present a spin-crossover Fe(II) coordination polymer with no permanent channels that selectively sorbs CO2 over N2. The one-dimensional chains display internal voids of ∼9 A diameter, each being capable to accept one molecule of CO2 at 1 bar and 273 K. X-ray diffraction provides direct structural evidence of the location of the gas molecules and reveals the formation of O═C═O(δ(-))···π interactions. This physisorption modifies the spin transition, producing a 9 K increase in T1/2.

118 citations

Journal ArticleDOI
TL;DR: Besides containing the largest number of 4f ions in a POM, 1 can be considered as the first giant POT with a crown shape, that is, with a ring structure displaying a central cavity available for ion encapsulation in an inorganic analogue of the crown ethers, and thus a new type of topology is added to this still limited family of POMs.
Abstract: Single crystals of Na40K6[Ni(H2O)6]3 [K@K7Ce24Ge12W120O456 (OH)12(H2O)64]· 178H2O are synthesized by addition of KCl to a NaOAc/AcOH buffer solution containing Ce(NO3)3, GeO2, Na2WO4, and NiCl2 followed by slow evaporation at room temperature (24% yield).

108 citations

Journal ArticleDOI
TL;DR: The preservation of the interesting physicochemical features of the CS-coated nanoMOF and their adapted colloidal stability and progressive biodegradation, together with their improved intestinal barrier bypass, make these nanoparticles a promising oral nanocarrier.
Abstract: Nanometric biocompatible Metal-Organic Frameworks (nanoMOFs) are promising candidates for drug delivery. Up to now, most studies have targeted the intravenous route, related to pain and severe complications; whereas nanoMOFs for oral administration, a commonly used non-invasive and simpler route, remains however unexplored. We propose here the biofriendly preparation of a suitable oral nanocarrier based on the benchmarked biocompatible mesoporous iron(III) trimesate nanoparticles coated with the bioadhesive polysaccharide chitosan (CS). This method does not hamper the textural/structural properties and the sorption/release abilities of the nanoMOFs upon surface engineering. The interaction between the CS and the nanoparticles has been characterized through a combination of high resolution soft X-ray absorption and computing simulation, while the positive impact of the coating on the colloidal and chemical stability under oral simulated conditions is here demonstrated. Finally, the intestinal barrier bypass capability and biocompatibility of CS-coated nanoMOF have been assessed in vitro, leading to an increased intestinal permeability with respect to the non-coated material, maintaining an optimal biocompatibility. In conclusion, the preservation of the interesting physicochemical features of the CS-coated nanoMOF and their adapted colloidal stability and progressive biodegradation, together with their improved intestinal barrier bypass, make these nanoparticles a promising oral nanocarrier.

108 citations

Journal ArticleDOI
TL;DR: A rational design of a family of MOFs, [Ln(bipyNO)4](TfO)3⋅x solvent (Ln=Tb (1); Dy (2); Ho (3); Er (4); TfO=triflate), in which the lanthanoid centres have an square-antiprismatic coordination environment suitable for SIM behaviour.
Abstract: The formation of a metal-organic framework (MOF) with nodes that have single-molecule magnet (SMM) behaviour has been achieved by using mononuclear lanthanoid analogues, also known as single-ion magnets (SIMs), which enormously simplifies the challenging issue of making SMM-MOFs. Here we present a rational design of a family of MOFs, [Ln(bipyNO)4](TfO)3⋅x solvent (Ln=Tb (1); Dy (2); Ho (3); Er (4); TfO=triflate), in which the lanthanoid centres have an square-antiprismatic coordination environment suitable for SIM behaviour. Magnetic measurements confirm the existence of slow magnetic relaxation typical of SMMs, which has been rationalised by means of a radial effective charge model. In addition, we have explored the incorporation of bulky polyoxometalates (POMs) into the cavities of the SIM-MOF by anion exchange, finding that they do not interfere with the slow magnetic relaxation. This demonstrates the robustness of the frameworks and opens the possibility of incorporating non-innocent anions.

102 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A brief introduction to the applications of MOFs in controlled drug/cargo delivery and cancer therapy that have been reported in recent years is provided here.
Abstract: Metal-organic frameworks (MOFs)-an emerging class of hybrid porous materials built from metal ions or clusters bridged by organic linkers-have attracted increasing attention in recent years. The superior properties of MOFs, such as well-defined pore aperture, tailorable composition and structure, tunable size, versatile functionality, high agent loading, and improved biocompatibility, make them promising candidates as drug delivery hosts. Furthermore, scientists have made remarkable achievements in the field of nanomedical applications of MOFs, owing to their facile synthesis on the nanoscale and alternative functionalization via inclusion and surface chemistry. A brief introduction to the applications of MOFs in controlled drug/cargo delivery and cancer therapy that have been reported in recent years is provided here.

1,475 citations

Journal ArticleDOI
TL;DR: In this review, the applications of MOFs with multiple active sites in synergistic organic catalysis, photocatalysis and tandem reactions are discussed and proposed mechanisms are presented in detail.
Abstract: Metal–organic frameworks (MOFs) are porous crystalline materials constructed from metal ions or clusters and multidentate organic ligands. Recently, the use of MOFs or MOF composites as catalysts for synergistic catalysis and tandem reactions has attracted increasing attention due to their tunable open metal centres, functional organic linkers, and active guest species in their pores. In this review, the applications of MOFs with multiple active sites in synergistic organic catalysis, photocatalysis and tandem reactions are discussed. These multifunctional MOFs can be categorized by the type of active centre as follows: (i) open metal centres and functional organic linkers in the MOF structure, (ii) active guest sites in the pores and active sites in the MOF structure, and (iii) bimetallic nanoparticles (NPs) on MOF supports. The types of synergistic catalysis and tandem reactions promoted by multifunctional MOFs and their proposed mechanisms are presented in detail. Here, catalytic MOFs with a single type of active site and MOFs that only serve as supports to enhance substrate adsorption are not discussed.

1,394 citations

Journal ArticleDOI
TL;DR: Various strategies based on the Fenton reaction have been employed to enhance hydroxyl radical generation, including nanomaterials selection, modulation of the reaction environment, and external energy fields stimulation, which are discussed systematically in this Minireview.
Abstract: Tailored to the specific tumour microenvironment, which involves acidity and the overproduction of hydrogen peroxide, advanced nanotechnology has been introduced to generate the hydroxyl radical ( OH) primarily for tumour chemodynamic therapy (CDT) through the Fenton and Fenton-like reactions Numerous studies have investigated the enhancement of CDT efficiency, primarily the increase in the amount of OH generated Notably, various strategies based on the Fenton reaction have been employed to enhance OH generation, including nanomaterials selection, modulation of the reaction environment, and external energy fields stimulation, which are discussed systematically in this Minireview Furthermore, the potential challenges and the methods used to facilitate CDT effectiveness are also presented to support this cutting-edge research area

1,190 citations

Journal ArticleDOI
TL;DR: The present review summarizes the current state of the art in the use of MOFs as solid catalysts according to the type of site, making special emphasis on the more recent strategies to increase the population of these active sites and tuning their activity, either by adapting the synthesis conditions or by post-synthetic modification.
Abstract: Metal organic frameworks (MOFs) are a class of porous crystalline materials that feature a series of unique properties, such as large surface area and porosity, high content of transition metals, and possibility to be designed and modified after synthesis, that make these solids especially suitable as heterogeneous catalysts. The active sites can be coordinatively unsaturated metal ions, substituents at the organic linkers or guest species located inside the pores. The defects on the structure also create these open sites. The present review summarizes the current state of the art in the use of MOFs as solid catalysts according to the type of site, making special emphasis on the more recent strategies to increase the population of these active sites and tuning their activity, either by adapting the synthesis conditions or by post-synthetic modification. This review highlights those reports illustrating the synergy derived from the presence of more than one of these types of sites, leading to activation of a substrate by more than one site or to the simultaneous activation of different substrates by complementary sites. This synergy is frequently the main reason for the higher catalytic activity of MOFs compared to homogeneous catalysts or other alternative solid materials. Besides dark reactions, this review also summarizes the use of MOFs as photocatalysts emphasizing the uniqueness of these materials regarding adaptation of the linkers as light absorbers and metal exchange at the nodes to enhance photoinduced electron transfer, in comparison with conventional inorganic photocatalysts. This versatility and flexibility that is offered by MOFs to optimize their visible light photocatalytic activity explains the current interest in exploiting these materials for novel photocatalytic reactions, including hydrogen evolution and photocatalytic CO2 reduction.

978 citations

Journal ArticleDOI
TL;DR: This review combines the use of coordination chemistry with the concepts of molecular magnetism to design magnetic Metal-Organic Frameworks (MOFs) in which the crystalline network undergoes a dynamic change upon application of an external stimulus.
Abstract: In this review we combine the use of coordination chemistry with the concepts of molecular magnetism to design magnetic Metal–Organic Frameworks (MOFs) in which the crystalline network undergoes a dynamic change upon application of an external stimulus. The various approaches so far developed to prepare these kinds of chemically or physically responsive MOFs with tunable magnetic properties are presented.

546 citations