scispace - formally typeset
Search or ask a question
Author

Monika Gullerova

Bio: Monika Gullerova is an academic researcher from University of Oxford. The author has contributed to research in topics: RNA & Gene silencing. The author has an hindex of 13, co-authored 21 publications receiving 818 citations.

Papers
More filters
Journal ArticleDOI
21 Mar 2008-Cell
TL;DR: The results uncover a hitherto unanticipated role for cohesin and further suggest a widespread role for the selective formation of dsRNA, heterochromatin, and subsequent cohesIn recruitment in regulated transcriptional termination.

213 citations

Journal ArticleDOI
TL;DR: This work shows that Dicer is present in both the nucleus and cytoplasm, and its nuclear levels are tightly regulated, and suggests that Pol II–associated Dicer restricts endogenous dsRNA formation from overlapping noncoding-RNA transcription units.
Abstract: Dicer is a central enzymatic player in RNA-interference pathways that acts to regulate gene expression in nearly all eukaryotes. Although the cytoplasmic function of Dicer is well documented in mammals, its nuclear function remains obscure. Here we show that Dicer is present in both the nucleus and cytoplasm, and its nuclear levels are tightly regulated. Dicer interacts with RNA polymerase II (Pol II) at actively transcribed gene loci. Loss of Dicer causes the appearance of endogenous double-stranded RNA (dsRNA), which in turn leads to induction of the interferon-response pathway and consequent cell death. Our results suggest that Pol II-associated Dicer restricts endogenous dsRNA formation from overlapping noncoding-RNA transcription units. Failure to do so has catastrophic effects on cell function.

108 citations

Journal ArticleDOI
TL;DR: The RNase III enzymes Drosha and Dicer directly regulate gene expression and RNA metabolism at different stages, such as transcriptional initiation and termination, and the processing of various RNA species, including pre-mRNAs.
Abstract: The RNase III enzymes Drosha and Dicer are essential for the production of small non-coding RNAs (ncRNAs). In canonical RNAi, microRNAs (miRNAs) regulate gene expression by post-transcriptional gene silencing. In non-canonical RNAi, nuclear RNAi factors generate small ncRNAs that are essential for transcriptional gene silencing. Recent evidence points to the existence of additional non-canonical nuclear RNAi functions in various organisms, including in genome maintenance and editing, as well as in DNA repair. Drosha and Dicer directly regulate gene expression and RNA metabolism at different stages, such as transcriptional initiation and termination, and the processing of various RNA species, including pre-mRNAs. Furthermore, Dicer isoforms were recently discovered and attributed with roles in apoptosis, development and disease.

87 citations

Journal ArticleDOI
TL;DR: Recent literature reporting miRNA‐independent, noncanonical functions of Drosha, DGCR8, Dicer and Ago proteins are reviewed and the importance of these functions is discussed.

76 citations

Journal ArticleDOI
TL;DR: It is shown that APA isoforms with shorter 3' UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type-specific events, and the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cy toplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice.
Abstract: Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3' UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type-specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3' UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice.

73 citations


Cited by
More filters
01 Aug 2010
TL;DR: In this paper, the identification of lincRNAs (lincRNA-p21) that serve as a repressor in p53-dependent transcriptional responses was reported, and the observed transcriptional repression was mediated through the physical association with hnRNP-K at repressed genes and regulation of p53 mediates apoptosis.
Abstract: Recently, more than 1000 large intergenic noncoding RNAs (lincRNAs) have been reported. These RNAs are evolutionarily conserved in mammalian genomes and thus presumably function in diverse biological processes. Here, we report the identification of lincRNAs that are regulated by p53. One of these lincRNAs (lincRNA-p21) serves as a repressor in p53-dependent transcriptional responses. Inhibition of lincRNA-p21 affects the expression of hundreds of gene targets enriched for genes normally repressed by p53. The observed transcriptional repression by lincRNA-p21 is mediated through the physical association with hnRNP-K. This interaction is required for proper genomic localization of hnRNP-K at repressed genes and regulation of p53 mediates apoptosis. We propose a model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes.

1,593 citations

Journal ArticleDOI
TL;DR: The mechanisms that modulate miRNA activity, stability and cellular localization through alternative processing and maturation, sequence editing, post-translational modifications of Argonaute proteins, subcellular localization and regulation of miRNA–target interactions are reviewed.
Abstract: Since their serendipitous discovery in nematodes, microRNAs (miRNAs) have emerged as key regulators of biological processes in animals. These small RNAs form complex networks that regulate cell differentiation, development and homeostasis. Deregulation of miRNA function is associated with an increasing number of human diseases, particularly cancer. Recent discoveries have expanded our understanding of the control of miRNA function. Here, we review the mechanisms that modulate miRNA activity, stability and cellular localization through alternative processing and maturation, sequence editing, post-translational modifications of Argonaute proteins, viral factors, transport from the cytoplasm and regulation of miRNA–target interactions. We conclude by discussing intriguing, unresolved research questions. MicroRNAs (miRNAs) are key regulators of biological processes. Recent discoveries have expanded our understanding of the control of miRNA function in animals, through alternative processing, miRNA-sequence editing, post-translational modifications of Argonaute proteins, subcellular localization and regulation of miRNA–target interactions.

1,317 citations

Journal ArticleDOI
TL;DR: Evidence suggests that cohesin acts as a novel topological device that traps chromosomal DNA within a large tripartite ring formed by its core subunits.
Abstract: The cohesin complex is a major constituent of interphase and mitotic chromosomes. Apart from its role in mediating sister chromatid cohesion, it is also important for DNA double-strand-break repair and transcriptional control. The functions of cohesin are regulated by phosphorylation, acetylation, ATP hydrolysis, and site-specific proteolysis. Recent evidence suggests that cohesin acts as a novel topological device that traps chromosomal DNA within a large tripartite ring formed by its core subunits.

917 citations

Journal ArticleDOI
TL;DR: A growing number of functions are emerging for RNA interference in the nucleus, in addition to well-characterized roles in post-transcriptional gene silencing in the cytoplasm, and increasing evidence indicates that RNAi regulates transcription through interaction with transcriptional machinery.
Abstract: A growing number of functions are emerging for RNA interference (RNAi) in the nucleus, in addition to well-characterized roles in post-transcriptional gene silencing in the cytoplasm. Epigenetic modifications directed by small RNAs have been shown to cause transcriptional repression in plants, fungi and animals. Additionally, increasing evidence indicates that RNAi regulates transcription through interaction with transcriptional machinery. Nuclear small RNAs include small interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) and are implicated in nuclear processes such as transposon regulation, heterochromatin formation, developmental gene regulation and genome stability.

882 citations

Journal ArticleDOI
TL;DR: The roles of APA in diverse cellular processes, including mRNA metabolism, protein diversification and protein localization, and more generally in gene regulation are discussed, and the molecular mechanisms underlying APA are discussed.
Abstract: Alternative polyadenylation (APA) is an RNA-processing mechanism that generates distinct 3' termini on mRNAs and other RNA polymerase II transcripts. It is widespread across all eukaryotic species and is recognized as a major mechanism of gene regulation. APA exhibits tissue specificity and is important for cell proliferation and differentiation. In this Review, we discuss the roles of APA in diverse cellular processes, including mRNA metabolism, protein diversification and protein localization, and more generally in gene regulation. We also discuss the molecular mechanisms underlying APA, such as variation in the concentration of core processing factors and RNA-binding proteins, as well as transcription-based regulation.

758 citations