scispace - formally typeset
Search or ask a question
Author

Monika Hospodiuk

Bio: Monika Hospodiuk is an academic researcher from Pennsylvania State University. The author has contributed to research in topics: Regenerative medicine & Abdominal wall. The author has an hindex of 7, co-authored 9 publications receiving 1344 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper, presenting a first-time comprehensive review of EBB, discusses the current advancements in EBB technology and highlights future directions to transform the technology to generate viable end products for tissue engineering and regenerative medicine.

1,048 citations

Journal ArticleDOI
TL;DR: This paper presents the first comprehensive review of existing bioink types including hydrogels, cell aggregates, microcarriers and decellularized matrix components used in extrusion-, droplet- and laser-based bioprinting processes.

694 citations

Journal ArticleDOI
TL;DR: Overall, MSC/HUVEC spheroids-laden hydrogels provided a highly suitable 3D microenvironment for bone tissue formation, which can be utilized in various applications, such as but not limited to tissue engineering, disease modeling and drug screening.

102 citations

Journal ArticleDOI
TL;DR: The current limitations and challenges in 3D bioprinting, including in situ techniques, are reviewed, which are one of several clinical translational models to facilitate the application of this technology from bench to bedside.
Abstract: Three-dimensional (3D) bioprinting is a revolutionary technology in building living tissues and organs with precise anatomic control and cellular composition. Despite the great progress in bioprinting research, there has yet to be any clinical translation due to current limitations in building human-scale constructs, which are vascularized and readily implantable. In this article, we review the current limitations and challenges in 3D bioprinting, including in situ techniques, which are one of several clinical translational models to facilitate the application of this technology from bench to bedside. A detailed discussion is made on the technical barriers in the fabrication of scalable constructs that are vascularized, autologous, functional, implantable, cost-effective, and ethically feasible. Clinical considerations for implantable bioprinted tissues are further expounded toward the correction of end-stage organ dysfunction and composite tissue deficits.

69 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Polymers are by far the most utilized class of materials for AM and their design, additives, and processing parameters as they relate to enhancing build speed and improving accuracy, functionality, surface finish, stability, mechanical properties, and porosity are addressed.
Abstract: Additive manufacturing (AM) alias 3D printing translates computer-aided design (CAD) virtual 3D models into physical objects. By digital slicing of CAD, 3D scan, or tomography data, AM builds objects layer by layer without the need for molds or machining. AM enables decentralized fabrication of customized objects on demand by exploiting digital information storage and retrieval via the Internet. The ongoing transition from rapid prototyping to rapid manufacturing prompts new challenges for mechanical engineers and materials scientists alike. Because polymers are by far the most utilized class of materials for AM, this Review focuses on polymer processing and the development of polymers and advanced polymer systems specifically for AM. AM techniques covered include vat photopolymerization (stereolithography), powder bed fusion (SLS), material and binder jetting (inkjet and aerosol 3D printing), sheet lamination (LOM), extrusion (FDM, 3D dispensing, 3D fiber deposition, and 3D plotting), and 3D bioprinting....

2,136 citations

01 Jan 2009
TL;DR: Organ printing can be defined as layer-by-layer additive robotic biofabrication of three-dimensional functional living macrotissues and organ constructs using tissue spheroids as building blocks.
Abstract: Organ printing can be defined as layer-by-layer additive robotic biofabrication of three-dimensional functional living macrotissues and organ constructs using tissue spheroids as building blocks. The microtissues and tissue spheroids are living materials with certain measurable, evolving and potentially controllable composition, material and biological properties. Closely placed tissue spheroids undergo tissue fusion - a process that represents a fundamental biological and biophysical principle of developmental biology-inspired directed tissue self-assembly. It is possible to engineer small segments of an intraorgan branched vascular tree by using solid and lumenized vascular tissue spheroids. Organ printing could dramatically enhance and transform the field of tissue engineering by enabling large-scale industrial robotic biofabrication of living human organ constructs with "built-in" perfusable intraorgan branched vascular tree. Thus, organ printing is a new emerging enabling technology paradigm which represents a developmental biology-inspired alternative to classic biodegradable solid scaffold-based approaches in tissue engineering.

942 citations

Journal ArticleDOI
TL;DR: This review will consider the ideal properties of bioactive composite 3D scaffolds and examine recent use of polymers, hydrogels, metals, ceramics and bio-glasses in BTE.

803 citations

Journal ArticleDOI
TL;DR: Numerical approaches were reviewed and implemented for depicting the cellular mechanics within the hydrogel as well as for prediction of mechanical properties to achieve the desired hydrogels construct considering cell density, distribution and material-cell interaction.
Abstract: Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration and interaction with the material. A calibrated computational framework is able to predict the tissue development and maturation and to optimize the bioprinting input parameters such as the starting material, the initial cell loading and the construct geometry. In this contribution relevant bioink properties are reviewed and discussed on the example of most popular bioprinting approaches. The effect of cells on hydrogel processing and vice versa is highlighted. Furthermore, numerical approaches were reviewed and implemented for depicting the cellular mechanics within the hydrogel as well as for prediction of mechanical properties to achieve the desired hydrogel construct considering cell density, distribution and material-cell interaction.

737 citations

Journal ArticleDOI
TL;DR: This paper presents the first comprehensive review of existing bioink types including hydrogels, cell aggregates, microcarriers and decellularized matrix components used in extrusion-, droplet- and laser-based bioprinting processes.

694 citations