scispace - formally typeset
Search or ask a question
Author

Monique Chyba

Bio: Monique Chyba is an academic researcher from University of Hawaii. The author has contributed to research in topics: Optimal control & Maximum principle. The author has an hindex of 21, co-authored 98 publications receiving 1753 citations. Previous affiliations of Monique Chyba include Princeton University & University of Geneva.


Papers
More filters
Book
12 May 2003
TL;DR: The concept of conjugate points in the Time Minimal Control Problem for Singular Trajectories, C0-Optimality, is introduced in this article, and the concept of Conjugate Points in the time minimization problem for single trajectories is discussed.
Abstract: Linear Systems and the Time Optimal Control Problem. - Exercises. - Optimal Control for Nonlinear Systems. - Exercises. - Geometric Optimal Control. - Exercises. - Singular Trajectories and Feedback Classification. - Exercises. - Controllability, Higher Order Maximum Principle, Legendre-Clebsch and Goh Necessary Optimality Conditions. - Exercises. - The Concept of Conjugate Points in the Time Minimal Control Problem for Singular Trajectories, C0-Optimality. - Time Minimal Control of Chemical Batch Reactors and Singular Trajectories. - Generic Properties of Singular Trajectories. - Exercises. - Singular Trajectories in Sub-Riemannian Geometry. - Exercises. - Micro-Local Resolution of the Singularity near a Singular Trajectory, Lagrangian Manifolds and Symplectic Stratifications. - Exercises. - Numerical Computations. - Conclusion and Perspectives. - Exercises. - References. - Index

395 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered the local sub-Riemannian geometry on ℜ3, (D,g ) where D is the distribution of the Martinet one-form and g is a metric on D. They proved that g can be taken as a sum of squares adx2 + cd2.
Abstract: This article deals with the local sub-Riemannian geometry on ℜ3 , (D,g ) where D is the distribution ker ω, ω being the Martinet one-form : dz - ½y2 dx and g is a Riemannian metric on D . We prove that we can take g as a sum of squares adx2 + cd2 . Then we analyze the flat case where a = c = 1. We parametrize the set of geodesics using elliptic integrals. This allows to compute the exponential mapping, the wave front, the conjugate and cut loci and the sub-Riemannian sphere. A direct consequence of our computations is to show that the sphere and the distance function are not sub-analytic. Some of these computations are generalized to a one parameter deformation of the flat case.

120 citations

Journal ArticleDOI

112 citations

Journal ArticleDOI
TL;DR: This technical note treats the challenging control problem of tracking a desired continuous trajectory for a maneuverable autonomous vehicle in the presence of gravity, buoyancy and fluid dynamic forces and moments by focusing on an autonomous underwater vehicle application.
Abstract: This technical note treats the challenging control problem of tracking a desired continuous trajectory for a maneuverable autonomous vehicle in the presence of gravity, buoyancy and fluid dynamic forces and moments. A realistic dynamics model that applies to maneuverable vehicles moving in 3-D Euclidean space is used for obtaining this control scheme. While applications of this control scheme include autonomous aerial and underwater vehicles, we focus on an autonomous underwater vehicle (AUV) application because of its richer, more nonlinearly coupled, dynamics. The desired trajectory and trajectory tracking errors are globally characterized in the nonlinear state space. Almost global asymptotic stability to the desired trajectory in the nonlinear state space is demonstrated both analytically and through numerical simulations.

89 citations

Journal ArticleDOI
TL;DR: In this paper, the authors complete preliminary results from the work of Bonnard and Sugny (2009) concerning the time-minimal control of dissipative two-level quantum systems whose dynamics is governed by the Lindblad equation.
Abstract: The objective of this article is to complete preliminary results from the work of Bonnard and Sugny (2009) and Sugny et al. (2007), concerning the time-minimal control of dissipative two-level quantum systems whose dynamics is governed by the Lindblad equation. The extremal system is described by a 3D-Hamiltonian depending upon three parameters. We combine geometric techniques with numerical simulations to deduce the optimal solutions.

72 citations


Cited by
More filters
MonographDOI
01 Jan 2006
TL;DR: This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms, into planning under differential constraints that arise when automating the motions of virtually any mechanical system.
Abstract: Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. This coherent and comprehensive book unifies material from several sources, including robotics, control theory, artificial intelligence, and algorithms. The treatment is centered on robot motion planning but integrates material on planning in discrete spaces. A major part of the book is devoted to planning under uncertainty, including decision theory, Markov decision processes, and information spaces, which are the “configuration spaces” of all sensor-based planning problems. The last part of the book delves into planning under differential constraints that arise when automating the motions of virtually any mechanical system. Developed from courses taught by the author, the book is intended for students, engineers, and researchers in robotics, artificial intelligence, and control theory as well as computer graphics, algorithms, and computational biology.

6,340 citations

Book
01 Jan 2005
TL;DR: In this article, a comprehensive set of modeling, analysis and design techniques for a class of simple mechanical control systems is presented, that is, systems whose Lagrangian is kinetic energy minus potential energy.
Abstract: This talk will outline a comprehensive set of modeling, analysis and design techniques for a class of mechanical systems. We concern ourselves with simple mechanical control systems, that is, systems whose Lagrangian is kinetic energy minus potential energy. Example devices include robotic manipulators, aerospace and underwater vehicles, and mechanisms that locomote exploiting nonholonomic constraints. Borrowing techniques from nonlinear control and geometric mechanics, we propose a coordinateinvariant control theory for this class of systems. First, we take a Riemannian geometric approach to modeling systems dened on smooth manifolds, subject to nonholonomic constraints, external forces and control forces. We also model mechanical systems on groups and symmetries. Second, we analyze some control-theoretic properties of this class of systems, including controllability, averaged response to oscillatory controls, and kinematic reductions. Finally, we exploit the modeling and analysis results to tackle control design problems. Starting from controllability and kinematic reduction assumptions we propose some algorithms for generating and tracking trajectories.

848 citations

Journal ArticleDOI
TL;DR: Adaptive feedback control (AFC) as mentioned in this paper is a state-of-the-art technique for quantum control. But it is not suitable for the case of femtosecond laser sources.
Abstract: Quantum control is concerned with active manipulation of physical and chemical processes on the atomic and molecular scale. This work presents a perspective of progress in the field of control over quantum phenomena, tracing the evolution of theoretical concepts and experimental methods from early developments to the most recent advances. Among numerous theoretical insights and technological improvements that produced the present state-of- the-art in quantum control, there have been several breakthroughs of foremost importance. On the technology side, the current experimental successes would be impossible without the development of intense femtosecond laser sources and pulse shapers. On the theory side, the two most critical insights were (i) realizing that ultrafast atomic and molecular dynamics can be controlled via manipulation of quantum interferences and (ii) understanding that optimally shaped ultrafast laser pulses are the most effective means for producing the desired quantum interference patterns in the controlled system. Finally, these theoretical and experimental advances were brought together by the crucial concept of adaptive feedback control (AFC), which is a laboratory procedure employing measurement-driven, closed-loop optimization to identify the best shapes of femtosecond laser control pulses for steering quantum dynamics towards the desired objective. Optimization in AFC experiments is guided by a learning algorithm, with stochastic methods proving to be especially effective. AFC of quantum phenomena has found numerous applications in many areas of the physical and chemical sciences, and this paper reviews the extensive experiments. Other subjects discussed include quantum optimal control theory, quantum control landscapes, the role of theoretical control

793 citations

Journal ArticleDOI
TL;DR: In this communication, state-of-the-art quantum control techniques are reviewed and put into perspective by a consortium of experts in optimal control theory and applications to spectroscopy, imaging, as well as quantum dynamics of closed and open systems.
Abstract: It is control that turns scientific knowledge into useful technology: in physics and engineering it provides a systematic way for driving a dynamical system from a given initial state into a desired target state with minimized expenditure of energy and resources As one of the cornerstones for enabling quantum technologies, optimal quantum control keeps evolving and expanding into areas as diverse as quantum-enhanced sensing, manipulation of single spins, photons, or atoms, optical spectroscopy, photochemistry, magnetic resonance (spectroscopy as well as medical imaging), quantum information processing and quantum simulation In this communication, state-of-the-art quantum control techniques are reviewed and put into perspective by a consortium of experts in optimal control theory and applications to spectroscopy, imaging, as well as quantum dynamics of closed and open systems We address key challenges and sketch a roadmap for future developments

572 citations

Journal ArticleDOI
Matthew J. Graham, Shrinivas R. Kulkarni, Eric C. Bellm, Scott M. Adams, Cristina Barbarino, Nadejda Blagorodnova, Dennis Bodewits, Bryce Bolin, Patrick Brady, S. Bradley Cenko, Chan-Kao Chang, Michael W. Coughlin, Kaushik De, Gwendolyn Eadie, Tony L. Farnham, Ulrich Feindt, Anna Franckowiak, Christoffer Fremling, Avishay Gal-Yam, Suvi Gezari, Sourav Ghosh, Daniel A. Goldstein, V. Zach Golkhou, Ariel Goobar, Anna Y. Q. Ho, Daniela Huppenkothen, Zeljko Ivezic, R. Lynne Jones, Mario Juric, David L. Kaplan, Mansi M. Kasliwal, Michael S. P. Kelley, Thomas Kupfer, Chien-De Lee, Hsing Wen Lin, Ragnhild Lunnan, Ashish Mahabal, Adam A. Miller, Chow-Choong Ngeow, Peter Nugent, Eran O. Ofek, Thomas A. Prince, L. Rauch, Jan van Roestel, Steve Schulze, Leo Singer, Jesper Sollerman, Francesco Taddia, Lin Yan, Quanzhi Ye, Po-Chieh Yu, Igor Andreoni, Tom A. Barlow, James M. Bauer, Ron Beck, Justin Belicki, Rahul Biswas, V. Brinnel, Tim Brooke, Brian D. Bue, Mattia Bulla, Kevin B. Burdge, Rick Burruss, Andrew J. Connolly, John Cromer, Virginia Cunningham, Richard Dekany, Alex Delacroix, Vandana Desai, Dmitry A. Duev, Eugean Hacopians, David Hale, George Helou, John Henning, David Hover, Lynne A. Hillenbrand, Justin Howell, Tiara Hung, David Imel, Wing-Huen Ip, Edward Jackson, Shai Kaspi, Stephen Kaye, Marek Kowalski, Emily Kramer, Michael A. Kuhn, Walter Landry, Russ R. Laher, Peter H. Mao, Frank J. Masci, Serge Monkewitz, Patrick J. Murphy, J. Nordin, Maria T. Patterson, Bryan E. Penprase, Michael Porter, Umaa Rebbapragada, Daniel J. Reiley, Reed Riddle, Mickael Rigault, Hector P. Rodriguez, Ben Rusholme, J. V. Santen, David L. Shupe, Roger M. H. Smith, Maayane T. Soumagnac, Robert Stein, Jason Surace, Paula Szkody, Scott Terek, Angela Van Sistine, Sjoert van Velzen, W. Thomas Vestrand, Richard Walters, Charlotte Ward, Chaoran Zhang, Jeffry Zolkower 
TL;DR: The Zwicky Transient Facility (ZTF) as discussed by the authors is a new time domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg$^2$ field of view and 8 second readout time.
Abstract: The Zwicky Transient Facility (ZTF), a public-private enterprise, is a new time domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg$^2$ field of view and 8 second readout time. It is well positioned in the development of time domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights in g and r filters and the visible Galactic plane every night in g and r. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities which provided funding ("partnership") are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter than r $\sim$ 20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei and tidal disruption events, stellar variability, and Solar System objects.

501 citations