scispace - formally typeset
Search or ask a question
Author

Montserrat Filella

Bio: Montserrat Filella is an academic researcher from University of Geneva. The author has contributed to research in topics: Antimony & Stability constants of complexes. The author has an hindex of 39, co-authored 188 publications receiving 6823 citations. Previous affiliations of Montserrat Filella include University of Barcelona & French Institute of Health and Medical Research.


Papers
More filters
Journal ArticleDOI
TL;DR: Antimony is ubiquitously present in the environment as a result of natural processes and human activities as discussed by the authors and is considered to be priority pollutants interest by the USEPA and the EU.

1,051 citations

Journal ArticleDOI
TL;DR: In this article, the main characteristics of the solution chemistry of antimony in relation to its behaviour and fate in natural waters are discussed based on a careful and systematic examination of a comprehensive collection of solution equilibrium and environmentally oriented studies, some published more than 100 years ago.

599 citations

Journal ArticleDOI
TL;DR: In this article, the physicochemical properties of the different groups of colloids are described, and the role of each colloid class is discussed with respect to homoaggregation (aggregation within a given colloid) and hetero-aggregation among different colloid types.
Abstract: This paper describes several possible interactions among the different types of organic and inorganic aquatic colloids, based on our present knowledge of their size, electric charge, and conformation. The physicochemical properties of the different groups of colloids are described. Emphasis is placed on the various types of organic components, including fulvic compounds. Subsequently, the role of each colloid class is discussed with respect to homoaggregation (aggregation within a given colloid class) and heteroaggregation (aggregation among different colloid types). On the basis of a synthesis of literature reports, microscopic observations of natural colloids, experimental results obtained with model systems, and numerical simulations, it is concluded that the formation of aggregates in aquatic systems can be understood by mainly considering the roles of three types of colloids: (i) compact inorganic colloids; (ii) large, rigid biopolymers; and (iii) either the soil-derived fulvic compounds or their eq...

576 citations

Journal ArticleDOI
TL;DR: The interactions of antimony with microbiota are discussed in relation to its fate in natural waters, and the following aspects: occurrence in microbiota, uptake transport mechanisms, pathways of Sb(III) removal from cells involved in antimony tolerance, oxidation and reduction of Antimony by living organisms, phytochelatin induction and biomethylation are covered.

374 citations

Journal ArticleDOI
TL;DR: A review of the current state of knowledge on the behavior of antimony in the environment can be found in this article, where the authors highlight several areas of environmental antimony chemistry that urgently need to be addressed.
Abstract: Environmental context. Antimony first attracted public attention in the mid-1990s amid claims that it was involved in Sudden Infant Death Syndrome. A substantial number of papers have now been published on the element and its behaviour in the natural environment. However, many key aspects of the environmental chemistry of antimony remain poorly understood. These include critical areas such as its ecotoxicology, its global cycling through different environmental compartments, and what chemical form it takes in different environments. More focussed research would help the situation. The present review highlights several areas of environmental antimony chemistry that urgently need to be addressed. Abstract. The objective of the present article is to present a critical overview of issues related to the current state of knowledge on the behaviour of antimony in the environment. It makes no attempt to systematically review all published data. However, it does provide a list of the main published reviews on antimony and identifies subjects where systematic reviews are needed. Areas where our knowledge is strong – and the corresponding gaps – in subjects ranging from total concentrations and speciation in the various environmental compartments, to ecotoxicity, to cycling between compartments, are discussed, along with the underlying research. Determining total antimony no longer poses a problem for most environmental samples but speciation measurements remain challenging throughout the process, from sampling to analysis. This means that the analytical tools still need to be improved but experience shows that, to be useful in practice, this should be directly driven by the requirements of laboratory and field measurements. Many different issues can be identified where further research is required, both in the laboratory and in the field, the most urgently needed studies probably being: (i) long-term spatial and temporal studies in the different environmental compartments in order to collect the data needed to establish a global biogeochemical cycle; (ii) laboratory studies of antimony interactions with potential natural binders; (iii) reliable ecotoxicological studies.

289 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review critiques existing nanomaterial research in freshwater, marine, and soil environments and illustrates the paucity of existing research and demonstrates the need for additional research.
Abstract: The recent advances in nanotechnology and the corresponding increase in the use of nanomaterials in products in every sector of society have resulted in uncertainties regarding environmental impacts. The objectives of this review are to introduce the key aspects pertaining to nanomaterials in the environment and to discuss what is known concerning their fate, behavior, disposition, and toxicity, with a particular focus on those that make up manufactured nanomaterials. This review critiques existing nanomaterial research in freshwater, marine, and soil environments. It illustrates the paucity of existing research and demonstrates the need for additional research. Environmental scientists are encouraged to base this research on existing studies on colloidal behavior and toxicology. The need for standard reference and testing materials as well as methodology for suspension preparation and testing is also discussed.

2,566 citations

Journal ArticleDOI
Tamar Frankel1
TL;DR: The Essay concludes that practitioners theorize, and theorists practice, use these intellectual tools differently because the goals and orientations of theorists and practitioners, and the constraints under which they act, differ.
Abstract: Much has been written about theory and practice in the law, and the tension between practitioners and theorists. Judges do not cite theoretical articles often; they rarely "apply" theories to particular cases. These arguments are not revisited. Instead the Essay explores the working and interaction of theory and practice, practitioners and theorists. The Essay starts with a story about solving a legal issue using our intellectual tools - theory, practice, and their progenies: experience and "gut." Next the Essay elaborates on the nature of theory, practice, experience and "gut." The third part of the Essay discusses theories that are helpful to practitioners and those that are less helpful. The Essay concludes that practitioners theorize, and theorists practice. They use these intellectual tools differently because the goals and orientations of theorists and practitioners, and the constraints under which they act, differ. Theory, practice, experience and "gut" help us think, remember, decide and create. They complement each other like the two sides of the same coin: distinct but inseparable.

2,077 citations

Book
01 Jan 2013
TL;DR: In this article, the authors defined the sources of heavy metals and metalloids in Soils and derived methods for the determination of Heavy Metals and Metalloids in soil.
Abstract: Preface.- Contributors.- List of Abbreviations.- Section 1: Basic Principles: Introduction.-Sources of Heavy Metals and Metalloids in Soils.- Chemistry of Heavy Metals and Metalloids in Soils.- Methods for the Determination of Heavy Metals and Metalloids in Soils.- Effects of Heavy Metals and Metalloids on Soil Organisms.- Soil-Plant Relationships of Heavy Metals and Metalloids.- Heavy Metals and Metalloids as Micronutrients for Plants and Animals.-Critical Loads of Heavy Metals for Soils.- Section 2: Key Heavy Metals And Metalloids: Arsenic.- Cadmium.- Chromium and Nickel.- Cobalt and Manganese.- Copper.-Lead.- Mercury.- Selenium.- Zinc.- Section 3: Other Heavy Metals And Metalloids Of Potential Environmental Significance: Antimony.- Barium.- Gold.- Molybdenum.- Silver.- Thallium.- Tin.- Tungsten.- Uranium.- Vanadium.- Glossary of Specialized Terms.- Index.

1,684 citations

Journal ArticleDOI
TL;DR: The surface properties of ENPs are of essential importance for their aggregation behavior, and thus for their mobility in aquatic and terrestrial systems and for their interactions with algae, plants and, fungi as mentioned in this paper.
Abstract: Developments in nanotechnology are leading to a rapid proliferation of new materials that are likely to become a source of engineered nanoparticles (ENPs) to the environment, where their possible ecotoxicological impacts remain unknown. The surface properties of ENPs are of essential importance for their aggregation behavior, and thus for their mobility in aquatic and terrestrial systems and for their interactions with algae, plants and, fungi. Interactions of ENPs with natural organic matter have to be considered as well, as those will alter the ENPs aggregation behavior in surface waters or in soils. Cells of plants, algae, and fungi possess cell walls that constitute a primary site for interaction and a barrier for the entrance of ENPs. Mechanisms allowing ENPs to pass through cell walls and membranes are as yet poorly understood. Inside cells, ENPs might directly provoke alterations of membranes and other cell structures and molecules, as well as protective mechanisms. Indirect effects of ENPs depend on their chemical and physical properties and may include physical restraints (clogging effects), solubilization of toxic ENP compounds, or production of reactive oxygen species. Many questions regarding the bioavailability of ENPs, their uptake by algae, plants, and fungi and the toxicity mechanisms remain to be elucidated.

1,548 citations

Journal ArticleDOI
TL;DR: Evidence is provided that micro-PS cause feeding modifications and reproductive disruption in oysters, with significant impacts on offspring, providing ground-breaking data on microplastic impacts in an invertebrate model, helping to predict ecological impact in marine ecosystems.
Abstract: Plastics are persistent synthetic polymers that accumulate as waste in the marine environment. Microplastic (MP) particles are derived from the breakdown of larger debris or can enter the environment as microscopic fragments. Because filter-feeder organisms ingest MP while feeding, they are likely to be impacted by MP pollution. To assess the impact of polystyrene microspheres (micro-PS) on the physiology of the Pacific oyster, adult oysters were experimentally exposed to virgin micro-PS (2 and 6 µm in diameter; 0.023 mg·L−1) for 2 mo during a reproductive cycle. Effects were investigated on ecophysiological parameters; cellular, transcriptomic, and proteomic responses; fecundity; and offspring development. Oysters preferentially ingested the 6-µm micro-PS over the 2-µm-diameter particles. Consumption of microalgae and absorption efficiency were significantly higher in exposed oysters, suggesting compensatory and physical effects on both digestive parameters. After 2 mo, exposed oysters had significant decreases in oocyte number (−38%), diameter (−5%), and sperm velocity (−23%). The D-larval yield and larval development of offspring derived from exposed parents decreased by 41% and 18%, respectively, compared with control offspring. Dynamic energy budget modeling, supported by transcriptomic profiles, suggested a significant shift of energy allocation from reproduction to structural growth, and elevated maintenance costs in exposed oysters, which is thought to be caused by interference with energy uptake. Molecular signatures of endocrine disruption were also revealed, but no endocrine disruptors were found in the biological samples. This study provides evidence that micro-PS cause feeding modifications and reproductive disruption in oysters, with significant impacts on offspring.

1,164 citations