scispace - formally typeset
Search or ask a question
Author

Mori T

Bio: Mori T is an academic researcher. The author has contributed to research in topics: Xanthurenic acid & Insulin. The author has an hindex of 1, co-authored 1 publications receiving 38 citations.

Papers
More filters
Journal Article
Kotake Y, Ueda T, Mori T, Igaki S, M. Hattori 
TL;DR: It is found that saturated fat increased urinary xanthurenic acid in vitamin B6 deficiency and reduced insulin activity, and the antigenicity of xanthUREnic acid-insulin was almost same as native insulin.
Abstract: 1) Xanthurenic acid-insulin complex reduced insulin activity. 2) The antigenicity of xanthurenic acid-insulin was almost same as native insulin. 3) Saturated fat increased urinary xanthurenic acid in vitamin B6 deficiency.

41 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The kynurenine pathway is the main pathway for tryptophan metabolism and generates compounds that can modulate activity at glutamate receptors and possibly nicotinic receptors, in addition to some as-yet-unidentified sites.
Abstract: At-a-glance The kynurenine pathway is the main pathway for tryptophan metabolism. It generates compounds that can modulate activity at glutamate receptors and possibly nicotinic receptors, in addition to some as-yet-unidentified sites. The pathway is in a unique position to regulate other aspects of the metabolism of tryptophan to neuroactive compounds, and also seems to be a key factor in the communication between the nervous and immune systems. It also has potentially important roles in the regulation of cell proliferation and tissue function in the periphery. As a result, the pathway presents a multitude of potential sites for drug discovery in neuroscience, oncology and visceral pathology.

713 citations

Journal ArticleDOI
TL;DR: The role of this unbalanced kynurenine metabolism through interactions with other neurochemicals is discussed as a major contributing pathophysiological mechanism in psychiatric disorders and the biomarker role of kynuranine metabolites and future therapeutic opportunities are discussed.
Abstract: Psychiatric disorders are documented to be associated with a mild pro-inflammatory state. Pro-inflammatory mediators could activate the tryptophan breakdown and kynurenine pathway with a shift toward the neurotoxic arm where excitotoxic N-methyl-d-aspartate receptor agonist quinolinic acid is formed. An unbalanced metabolism in terms of neuroprotective and neurotoxic effects, such as reduced kynurenic acid to kynurenine ratio, has been demonstrated in the major psychiatric disorders such as unipolar depression, bipolar manic-depressive disorder and schizophrenia, and in drug-induced neuropsychiatric side effects such as interferon-α treated patients. The changes in serum or plasma are shown to be associated with central changes such as in the cerebrospinal fluid and certain brain areas. While currently available antidepressants and mood stabilizers could not efficiently improve these neurochemical changes within the same period that could induce clinical improvement, some antipsychotic treatments could reverse certain metabolic imbalances. Some of these changes were tested also in animal models. In this review the role of this unbalanced kynurenine metabolism through interactions with other neurochemicals is discussed as a major contributing pathophysiological mechanism in psychiatric disorders. Moreover, the biomarker role of kynurenine metabolites and future therapeutic opportunities are also discussed.

197 citations

Journal ArticleDOI
TL;DR: KYN–TRY metabolism might be the meeting point for gene‐environment interaction and a new target for prevention and treatment of MetS/AAND.
Abstract: The neuroendocrine theory of aging identified a cluster of conditions (hypertension, obesity, dyslipidemia, diabetes type 2, menopause, late onset depression, vascular cognitive impairment, impairment of immune defense, and some forms of cancer, e.g., breast and prostate) as age-associated neuroendocrine disorders (AAND). Obesity, dyslipidemia, hypertension, and type 2 diabetes were later described as metabolic syndromes (MetS). Chronic inflammation is currently considered as a common feature of MetS/AAND. One of the mechanisms by which chronic inflammation might trigger and/or maintain the development of MetS/AAND is transcriptional induction of indoleamine 2,3-dioxygenase (IDO), rate-limiting enzyme of tryptophan (TRY)-kynurenine (KYN) pathway, by pro-inflammatory cytokines (PIC). Activation of IDO shifts TRY metabolism from serotonin synthesis to formation of "kynurenines." Diminished serotonin production is associated with mental depression while increased formation of kynurenines might contribute to development of MetS/AAND via their apoptotic, neurotoxic, and pro-oxidative effects, and upregulation of inducible nitric oxide synthase, phospholipase A2, arachidonic acid, prostaglandin, 5-lipoxygenase, and leukotriene cascade. The combined presence of high producers of alleles of polymorphic PIC genes (e.g., interferon-gamma and tumor necrosis factor alpha) might account for the genetic predisposition to high levels of PIC production, leading to "superinduction" of IDO. The other rate-limiting enzyme of the TRY-KYN pathway, TRY 2,3-dioxygenase, is activated by substrate (TRY) and cortisol. Therefore, KYN-TRY metabolism might be the meeting point for gene-environment interaction and a new target for prevention and treatment of MetS/AAND.

187 citations

Journal ArticleDOI
TL;DR: The role of microbial metabolites in the pathophysiology of diabetes type 2 and autism is described and dysbiosis leading to reduced butyrate levels may increase bacterial translocation into the systemic circulation.
Abstract: There is a growing awareness that gut commensal metabolites play a major role in host physiology and indeed the pathophysiology of several illnesses. The composition of the microbiota largely determines the levels of tryptophan in the systemic circulation and hence, indirectly, the levels of serotonin in the brain. Some microbiota synthesize neurotransmitters directly, e.g., gamma-amino butyric acid, while modulating the synthesis of neurotransmitters, such as dopamine and norepinephrine, and brain-derived neurotropic factor (BDNF). The composition of the microbiota determines the levels and nature of tryptophan catabolites (TRYCATs) which in turn has profound effects on aryl hydrocarbon receptors, thereby influencing epithelial barrier integrity and the presence of an inflammatory or tolerogenic environment in the intestine and beyond. The composition of the microbiota also determines the levels and ratios of short chain fatty acids (SCFAs) such as butyrate and propionate. Butyrate is a key energy source for colonocytes. Dysbiosis leading to reduced levels of SCFAs, notably butyrate, therefore may have adverse effects on epithelial barrier integrity, energy homeostasis, and the T helper 17/regulatory/T cell balance. Moreover, dysbiosis leading to reduced butyrate levels may increase bacterial translocation into the systemic circulation. As examples, we describe the role of microbial metabolites in the pathophysiology of diabetes type 2 and autism.

171 citations

Journal ArticleDOI
TL;DR: It is proposed that one of the mechanisms of IR is inflammation- and/or stress-induced upregulation of TRP–KYN metabolism in combination with P5P deficiency-induced diversion of KYN–NAD metabolism towards formation of XA and other KYN derivatives affecting insulin activity.
Abstract: Insulin resistance (IR) underlines aging and aging-associated medical (diabetes, obesity, dyslipidemia, hypertension) and psychiatric (depression, cognitive decline) disorders. Molecular mechanisms of IR in genetically or metabolically predisposed individuals remain uncertain. Current review of the literature and our data presents the evidences that dysregulation of tryptophan (TRP)-kynurenine (KYN) and KYN-nicotinamide adenine dinucleotide (NAD) metabolic pathways is one of the mechanisms of IR. The first and rate-limiting step of TRP-KYN pathway is regulated by enzymes inducible by pro-inflammatory factors and/or stress hormones. The key enzymes of KYN-NAD pathway require pyridoxal-5-phosphate (P5P), an active form of vitamin B6, as a cofactor. Deficiency of P5P diverts KYN-NAD metabolism from production of NAD to the excessive formation of xanthurenic acid (XA). Human and experimental studies suggested that XA and some other KYN metabolites might impair production, release, and biological activity of insulin. We propose that one of the mechanisms of IR is inflammation- and/or stress-induced upregulation of TRP-KYN metabolism in combination with P5P deficiency-induced diversion of KYN-NAD metabolism towards formation of XA and other KYN derivatives affecting insulin activity. Monitoring of KYN/P5P status and formation of XA might help to identify subjects at risk for IR. Pharmacological regulation of the TRP-KYN and KYN-NAD pathways and maintaining of adequate vitamin B6 status might contribute to prevention and treatment of IR in conditions associated with inflammation/stress-induced excessive production of KYN and deficiency of vitamin B6, e.g., type 2 diabetes, obesity, cardiovascular diseases, aging, menopause, pregnancy, and hepatitis C virus infection.

169 citations