scispace - formally typeset
Search or ask a question
Author

Morris Krauss

Other affiliations: Bar-Ilan University
Bio: Morris Krauss is an academic researcher from National Institute of Standards and Technology. The author has contributed to research in topics: Ab initio & Ground state. The author has an hindex of 39, co-authored 134 publications receiving 8217 citations. Previous affiliations of Morris Krauss include Bar-Ilan University.


Papers
More filters
Journal ArticleDOI
TL;DR: Relativistic compact effective potentials (RCEP) as mentioned in this paper were derived from numerical Dirac-Fock atomic wavefunctions using shape-constrained shapes.
Abstract: Relativistic compact effective potentials (RCEP), which replace the atomic core electrons in molecular calculations, have been derived from numerical Dirac–Fock atomic wavefunctions using shape-con...

1,966 citations

Journal ArticleDOI
TL;DR: In this article, the angular-dependent components of these potentials are represented by compact one-and two-term Gaussian expansions obtained directly from the appropriate eigenvalue equation, and energy optimized Gaussian basis set expansions of the atomic pseudo-orbitals, which have a common set of exponents for the s and p orbitals, are also presented.
Abstract: Compact effective potentials, which replace the atomic core electrons in molecular calculations, are presented for atoms in the first and second rows of the periodic table. The angular‐dependent components of these potentials are represented by compact one‐ and two‐term Gaussian expansions obtained directly from the appropriate eigenvalue equation. Energy‐optimized Gaussian basis set expansions of the atomic pseudo‐orbitals, which have a common set of exponents (shared exponents) for the s and p orbitals, are also presented. The potentials and basis sets have been used to calculate the equilibrium structures and spectroscopic properties of several molecules. The results compare extremely favorably with corresponding all‐electron calculations.

1,952 citations

Journal ArticleDOI
TL;DR: In this article, an effective fragment model is developed to treat solvent effects on chemical properties and reactions, and formulae are presented that permit the determination of analytic energy gradients and numerically determined energy second derivatives (hessians) for the complete system.
Abstract: An effective fragment model is developed to treat solvent effects on chemical properties and reactions. The solvent, which might consist of discrete water molecules, protein, or other material, is treated explicitly using a model potential that incorporates electrostatics, polarization, and exchange repulsion effects. The solute, which one can most generally envision as including some number of solvent molecules as well, is treated in a fully ab initio manner, using an appropriate level of electronic structure theory. In addition to the fragment model itself, formulae are presented that permit the determination of analytic energy gradients and, therefore, numerically determined energy second derivatives (hessians) for the complete system. Initial tests of the model for the water dimer and water‐formamide are in good agreement with fully ab initio calculations.

565 citations

Journal ArticleDOI
TL;DR: In this article, a multiconfiguration self-consistent field (MC-SCF) wavefunctions have been computed for the low-lying X 2A1, A 2B2, B 2B1, C 2A2, 4B2 and 2Σ+g electronic states of NO2.
Abstract: Traditional spectroscopic analysis of the complex and irregular absorption spectrum of NO2 has provided a relatively small amount of information concerning the nature of the excited states. An extensive ab initio investigation has been undertaken, therefore, to provide a basis for interpretation of the experimental results. Multiconfiguration self‐consistent‐field (MC–SCF) wavefunctions have been computed for the low‐lying X 2A1, A 2B2, B 2B1, C 2A2, 4B2, 4A2, and 2Σ+g electronic states of NO2. The minima of the A 2B2, B 2B1, and C 2A2 states have all been found to be within 2 eV of the minimum of the X 2A1 ground state; for these states, C2v potential surfaces have been constructed for purposes of a spectral interpretation. The 4B2, 4A2, and 2Σ+g states are all more than 4 eV above the minimum of the ground state and have been examined in less detail. The study described here significantly improves on previous NO2 ab initio calculations in three important areas: (1) The double‐zeta‐plus‐polarization quality basis set is larger and more flexible; (2) the treatment of molecular correlation is more extensive; and (3) the electronic energies have been calculated for several different bond lengths and bond angles in each state. For the four lowest doublet states the following spectral data have been obtained: The ground state experimental constants are included in parentheses. The estimated accuracy of the various parameters is ±0.02 A for bond length, ±2° for bond angle, ±10% for the vibrational frequencies, ±0.10 D for dipole moments, and ±0.3 eV for the adiabatic excitation energies. An unusual feature has been found for the 2Σ+g state. The equilibrium geometry of this linear state has two unequal bond lengths of 1.20 A and 1.42 A and the inversion barrier is approximately 800 cm−1.

253 citations

Journal ArticleDOI
TL;DR: In this article, Hartree-Fock interaction energy curves have been calculated for the X 2Σ+, A 2Π, and B 2 Σ+ states of neutral LiHe and NaHe as well as for the ground state X 1Σ+ ions over a range of distances from 3 to 10 a.u.
Abstract: Hartree–Fock interaction energy curves have been calculated for the X 2Σ+, A 2Π, and B 2Σ+ states of neutral LiHe and NaHe as well as for the ground state X 1Σ+ ions over a range of distances from 3 to 10 a.u. Since it is intended to apply these results to scattering problems, the variation of the dipole and quadrupole moments and the electronic transition probabilities with internuclear distance were also obtained. Both Slater‐type functions and Gaussian‐type functions were used as variational trial functions with the intention of gauging the efficacy of the Gaussian basis. Except for situations involving small energy minima the Gaussian basis yielded results accurate relative to the Slater basis. The features of the Hartree–Fock interaction energy curves can be summarized as follows:(1) The X 2Σ+ interaction energy is purely repulsive for both molecules to the accuracy of the present calculation.(2) The A 2Π and X 1Σ+ curves are strikingly similar for both Li and Na confirming the penetration of the He ...

117 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an analysis of the performances of a parameter free density functional model (PBE0) obtained combining the so-called PBE generalized gradient functional with a predefined amount of exact exchange is presented.
Abstract: We present an analysis of the performances of a parameter free density functional model (PBE0) obtained combining the so called PBE generalized gradient functional with a predefined amount of exact exchange. The results obtained for structural, thermodynamic, kinetic and spectroscopic (magnetic, infrared and electronic) properties are satisfactory and not far from those delivered by the most reliable functionals including heavy parameterization. The way in which the functional is derived and the lack of empirical parameters fitted to specific properties make the PBE0 model a widely applicable method for both quantum chemistry and condensed matter physics.

13,411 citations

Journal ArticleDOI
TL;DR: In this article, the Coulomb, exchange, and core-orthogonality effects of the chemically inert core electron in the transition metal atoms Sc to Hg have been replaced by the ab initio effective core potentials (ECP).
Abstract: Ab initio effective core potentials (ECP’s) have been generated to replace the Coulomb, exchange, and core‐orthogonality effects of the chemically inert core electron in the transition metal atoms Sc to Hg. For the second and third transition series relative ECP’s have been generated which also incorporate the mass–velocity and Darwin relativistic effects into the potential. The ab initio ECP’s should facilitate valence electron calculations on molecules containing transition‐metal atoms with accuracies approaching all‐electron calculations at a fraction of the computational cost. Analytic fits to the potentials are presented for use in multicenter integral evaluation. Gaussian orbital valence basis sets are developed for the (3d,4s,4p), (4d,5s,5p), and (5d,6s,6p) orbitals of the first, second, and third transition series atoms, respectively. All‐electron and valence‐electron atomic excitation energies are also compared for the low‐lying states of Sc–Hg, and the valence‐electron calculations are found to reproduce the all‐electron excitation energies (typically within a few tenths of an eV).

12,141 citations

Journal ArticleDOI
TL;DR: In this article, a consistent set of ab initio effective core potentials (ECP) has been generated for the main group elements from Na to Bi using the procedure originally developed by Kahn.
Abstract: A consistent set of ab initio effective core potentials (ECP) has been generated for the main group elements from Na to Bi using the procedure originally developed by Kahn. The ECP’s are derived from all‐electron numerical Hartree–Fock atomic wave functions and fit to analytical representations for use in molecular calculations. For Rb to Bi the ECP’s are generated from the relativistic Hartree–Fock atomic wave functions of Cowan which incorporate the Darwin and mass–velocity terms. Energy‐optimized valence basis sets of (3s3p) primitive Gaussians are presented for use with the ECP’s. Comparisons between all‐electron and valence‐electron ECP calculations are presented for NaF, NaCl, Cl2, Cl2−, Br2, Br2−, and Xe2+. The results show that the average errors introduced by the ECP’s are generally only a few percent.

8,952 citations

Journal ArticleDOI
TL;DR: The new local density functional, called M06-L, is designed to capture the main dependence of the exchange-correlation energy on local spin density, spin density gradient, and spin kinetic energy density, and it is parametrized to satisfy the uniform-electron-gas limit.
Abstract: We present a new local density functional, called M06-L, for main-group and transition element thermochemistry, thermochemical kinetics, and noncovalent interactions. The functional is designed to capture the main dependence of the exchange-correlation energy on local spin density, spin density gradient, and spin kinetic energy density, and it is parametrized to satisfy the uniform-electron-gas limit and to have good performance for both main-group chemistry and transition metal chemistry. The M06-L functional and 14 other functionals have been comparatively assessed against 22 energetic databases. Among the tested functionals, which include the popular B3LYP, BLYP, and BP86 functionals as well as our previous M05 functional, the M06-L functional gives the best overall performance for a combination of main-group thermochemistry, thermochemical kinetics, and organometallic, inorganometallic, biological, and noncovalent interactions. It also does very well for predicting geometries and vibrational frequencies. Because of the computational advantages of local functionals, the present functional should be very useful for many applications in chemistry, especially for simulations on moderate-sized and large systems and when long time scales must be addressed. © 2006 American Institute of Physics. DOI: 10.1063/1.2370993

4,154 citations

Journal ArticleDOI
TL;DR: This chapter discusses the development of DFT as a tool for Calculating Atomic andMolecular Properties and its applications, as well as some of the fundamental and Computational aspects.
Abstract: I. Introduction: Conceptual vs Fundamental andComputational Aspects of DFT1793II. Fundamental and Computational Aspects of DFT 1795A. The Basics of DFT: The Hohenberg−KohnTheorems1795B. DFT as a Tool for Calculating Atomic andMolecular Properties: The Kohn−ShamEquations1796C. Electronic Chemical Potential andElectronegativity: Bridging Computational andConceptual DFT1797III. DFT-Based Concepts and Principles 1798A. General Scheme: Nalewajski’s ChargeSensitivity Analysis1798B. Concepts and Their Calculation 18001. Electronegativity and the ElectronicChemical Potential18002. Global Hardness and Softness 18023. The Electronic Fukui Function, LocalSoftness, and Softness Kernel18074. Local Hardness and Hardness Kernel 18135. The Molecular Shape FunctionsSimilarity 18146. The Nuclear Fukui Function and ItsDerivatives18167. Spin-Polarized Generalizations 18198. Solvent Effects 18209. Time Evolution of Reactivity Indices 1821C. Principles 18221. Sanderson’s Electronegativity EqualizationPrinciple18222. Pearson’s Hard and Soft Acids andBases Principle18253. The Maximum Hardness Principle 1829IV. Applications 1833A. Atoms and Functional Groups 1833B. Molecular Properties 18381. Dipole Moment, Hardness, Softness, andRelated Properties18382. Conformation 18403. Aromaticity 1840C. Reactivity 18421. Introduction 18422. Comparison of Intramolecular ReactivitySequences18443. Comparison of Intermolecular ReactivitySequences18494. Excited States 1857D. Clusters and Catalysis 1858V. Conclusions 1860VI. Glossary of Most Important Symbols andAcronyms1860VII. Acknowledgments 1861VIII. Note Added in Proof 1862IX. References 1865

3,890 citations