scispace - formally typeset
Search or ask a question
Author

Morteza Nazerian

Other affiliations: Zabol University
Bio: Morteza Nazerian is an academic researcher from Shahid Beheshti University. The author has contributed to research in topics: Materials science & Composite material. The author has an hindex of 8, co-authored 28 publications receiving 176 citations. Previous affiliations of Morteza Nazerian include Zabol University.

Papers
More filters
Journal ArticleDOI
01 Mar 2018-Cerne
TL;DR: In this article, the hydration behavior of gypsum paste mixed with bagasse and kenaf fibers as lignocellulosic material and fiberglass as inorganic material is evaluated.
Abstract: In this study, the hydration behavior of gypsum paste mixed with bagasse and kenaf fibers as lignocellulosic material and fiberglass as inorganic material is evaluated. Moreover, the properties of gypsum-bonded fiberboard (GBFB) are examined using bagasse fibers (Saccharum officinarum.L), kenaf fibers (Hibiscus cannabinus.L) and industrial fiberglass. The weight ratios of fiberglass (at three levels 0, 3 and 6%), bagasse fiber (at three levels 0, 7.5 and 15%) and kenaf fiber (at three levels 0, 7.5 and 15%) to gypsum are used to make the gypsum-bonded fiberboard with the nominal density 1.10 g.cm-3 . After preparing the fiberboard, its flexural properties were examined. Response surface methodology (RSM) and artificial neural network (ANN) were used to model the bending strength of gypsum-bonded fiberboard. According to the hydration tests, it was determined that as the extractives in the lignocellulosic materials increased, the temperature of the mixture decreased and its setting time increased. According to the bending test results, it was determined that there is an ideal consistency between the predicted values and the observed data, so that as bagasse and kenaf fiber increased, the modulus of rupture (MOR) increased. Maximum MOR of panel was predicted to be 10.81 MPa and 11MPa by RSM and ANN at optimum condition. Based on the statistical analysis, the training and validation data sets of the studied models were compared by the coefficient of determination (R2), root mean squares error (RMSE) and mean absolute error (MAE). ANN model showed a much more accurate prediction than RSM in terms of the values R2, RMSE and MAE.

28 citations

Journal ArticleDOI
TL;DR: In this paper, the suitability of reed as a substitute for wood in laboratory made 3-layer particleboard in order to supplement the supply of raw material for the Iranian particleboard industries was investigated.
Abstract: This research was conducted to investigate the suitability of reed (Arundo donax) as a substitute for wood in laboratory made 3-layer particleboard in order to supplement the supply of raw material for the Iranian particleboard industries. The ratio of the mixture of reed and wood particles were 20:80, 30:70, and 40:60, respectively, in the surface and middle layers. Press temperatures were chosen at two levels of 165 and 185 °C. Three levels of urea formaldehyde resin were selected for the surface layers, namely: 8, 10, and 12 percent. The experimental panels were tested for their mechanical strength including modulus of elasticity (MOE), modulus of rupture (MOR), internal bonding (IB) and physical properties (thickness swelling and water absorption) according to the procedure in DIN 68763. In general, the results show that reed has a positive effect on the mechanical and physical properties of boards. In this research, the treatment with 40% reed, 12% resin in the surface layers and a 185 °C press temperature has resulted in an optimum reed board product.

20 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the hydration behavior and some physical/mechanical properties of cement-bonded particleboard (CBPB) containing particles of wheat straw and poplar wood at various usage ratios and bonded with Portland cement mixed with different levels of inorganic additives.
Abstract: We investigated the hydration behavior and some physical/mechanical properties of cement-bonded particleboard (CBPB) containing particles of wheat straw and poplar wood at various usage ratios and bonded with Portland cement mixed with different levels of inorganic additives. We determined the setting time and compression strength of cement pastes containing different additives and particles, and studied the effects of these additives and particles on thickness swelling, internal bond strength and modulus of rupture of CBPB by using RSM (Response Surface Methodology). The mathematical model equations (second-order response functions) were derived to optimize properties of CBPB by computer simulation programming. Predicted values were in agreement with experimental values (R2 values of 0.93, 0.96 and 0.96 for TS, IB and MOR, respectively). RSM can be efficiently applied to model panel properties. The variables can affect the properties of panels. The cement composites with bending strength > 12.5 MPa and internal bond strength > 0.28 MPa can be made by using wheat straw as a reinforcing material. Straw particle usage up to 11.5% in the mixture satisfies the minimum requirements of International Standard, EN 312 (2003) for IB and MOR. The dose of 4.95% calcium chloride, by weight of cement, can improve mechanical properties of the panels at the minimum requirement of EN 312. By increasing straw content from 0 to 30%, TS was reduced by increasing straw particle usage up to 1.5% and with 5.54% calcium chloride in the mixture, TS satisfied the EN 312 standard.

18 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of jute as a natural fiber reinforcement on the setting and hydration behavior of cement has been investigated using a variety of analytical techniques including thermal, infrared spectroscopy, X-ray diffraction, and free lime estimation by titration.
Abstract: The present investigation deals with the effect of jute as a natural fiber reinforcement on the setting and hydration behavior of cement. The addition of jute fiber in cement matrix increases the setting time and standard water consistency value. The hydration characteristics of fiber reinforced cement were investigated using a variety of analytical techniques including thermal, infrared spectroscopy, X-ray diffraction, and free lime estimation by titration. Through these analyses it was demonstrated that the hydration kinetics of cement is retarded with the increase in jute contents in cement matrix. A model has been proposed to explain the retarded hydration kinetics of jute fiber reinforced cement composites. The prolonged setting of these fiber reinforced cement composites would be beneficial for applications where the premixed cement aggregates are required to be transported from a distant place to the construction site.

135 citations

Journal ArticleDOI
TL;DR: In this paper, the application of artificial neural network (ANN), response surface methodology (RSM), and adaptive neuro-fuzzy inference system (ANFIS) in modeling the uptake of Eriochrome black-T (EBT) dye from aqueous solution using Nteje clay was the focus of the study.

94 citations

Journal ArticleDOI
TL;DR: In this paper , a review of the applications of Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) in building and construction industry 4.0 in the facets of architectural design and visualization; material design and optimization; structural design and analysis; offsite manufacturing and automation; construction management, progress monitoring, and safety; smart operation, building management and health monitoring; and durability, life cycle analysis, and circular economy.

83 citations

Journal ArticleDOI
TL;DR: In this article, an environment friendly solution was provided to replace cement with wood bot-tom ashes at 10, 15, 20 and 25% levels and modify the mortars produced with styrene butadiene polymers for improved strength.

73 citations