scispace - formally typeset
Search or ask a question
Author

Mosbeh R. Kaloop

Bio: Mosbeh R. Kaloop is an academic researcher from Incheon National University. The author has contributed to research in topics: Structural health monitoring & Global Positioning System. The author has an hindex of 15, co-authored 81 publications receiving 1094 citations. Previous affiliations of Mosbeh R. Kaloop include Kunsan National University & Harbin Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors assess the land use change detection by using GIS in Mansoura and Talkha from 1985 to 2010, showing that built-up area has been increased from 28 to 255 km 2 by more than 30% and agricultural land reduced by 33%.
Abstract: Urban growth is a worldwide phenomenon but the rate of urbanization is very fast in developing country like Egypt. It is mainly driven by unorganized expansion, increased immigration, rapidly increasing population. In this context, land use and land cover change are considered one of the central components in current strategies for managing natural resources and monitoring environmental changes. In Egypt, urban growth has brought serious losses of agricultural land and water bodies. Urban growth is responsible for a variety of urban environmental issues like decreased air quality, increased runoff and subsequent flooding, increased local temperature, deterioration of water quality, etc. Egypt possessed a number of fast growing cities. Mansoura and Talkha cities in Daqahlia governorate are expanding rapidly with varying growth rates and patterns. In this context, geospatial technologies and remote sensing methodology provide essential tools which can be applied in the analysis of land use change detection. This paper is an attempt to assess the land use change detection by using GIS in Mansoura and Talkha from 1985 to 2010. Change detection analysis shows that built-up area has been increased from 28 to 255 km 2 by more than 30% and agricultural land reduced by 33%. Future prediction is done by using the Markov chain analysis. Information on urban growth, land use and land cover change study is very useful to local government and urban planners for the betterment of future plans of sustainable development of the city.

374 citations

Journal ArticleDOI
TL;DR: In this article, a multivariate adaptive regression splines model (MARS) was used as a feature extraction method to extract the optimum inputs that use to design the high performance concrete (HPC) structures.

67 citations

Journal ArticleDOI
TL;DR: In this paper, a Particle Swarm Optimization-based Extreme Learning Machine (PSO-ELM) was used to predict the performance of stabilized aggregate bases subjected to wet-dry cycles.
Abstract: Stabilized base/subbase materials provide more structural support and durability to both flexible and rigid pavements than conventional base/subbase materials. For the design of stabilized base/subbase layers in flexible pavements, good performance in terms of resilient modulus (Mr) under wet-dry cycle conditions is required. This study focuses on the development of a Particle Swarm Optimization-based Extreme Learning Machine (PSO-ELM) to predict the performance of stabilized aggregate bases subjected to wet-dry cycles. Furthermore, the performance of the developed PSO-ELM model was compared with the Particle Swarm Optimization-based Artificial Neural Network (PSO-ANN) and Kernel ELM (KELM). The results showed that the PSO-ELM model significantly yielded higher prediction accuracy in terms of the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), and the coefficient of determination (r2) compared with the other two investigated models, PSO-ANN and KELM. The PSO-ELM was unique in that the predicted Mr values generally yielded the same distribution and trend as the observed Mr data.

55 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the use of RTK-GPS (1.Hz) to provide data for use in the assessment of existing structures, and demonstrate that the moving average filter is simple and suitable to smooth high noises and errors of GPS observation signals, and the multi-filter of short-period can reveal the dynamic displacement of bridge deck movement.

48 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors used a GPS system for deformation data collection and two analytical methods namely, Kalman Filter (KF) and Parametric Least Square (PLS) were used for the adjustment of these data.
Abstract: Tianjin Yonghe Bridge is one of the important infrastructures in China where it serves as the crucial links in the transport network. Monitoring and maintenance of this bridge are essential tasks in prolonging its life. In this paper, GPS system was used for deformation data collection. Two analytical methods namely; Kalman Filter (KF) and Parametric Least Square (PLS) were used for the adjustment of these data. The analysis of test results indicate that: (1) the traffic loads are the main factor affects bridge damage, (2) after ten months of traffic opening, the south tower of bridge was returned to its original case, and (3) the maximum deformation was pronounced 48.2 m far from the beginning abutment after six months of bridge opening.

46 citations


Cited by
More filters
01 Jan 2016
TL;DR: The properties of concrete is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you for downloading properties of concrete. As you may know, people have look hundreds times for their chosen readings like this properties of concrete, but end up in malicious downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they juggled with some malicious virus inside their computer. properties of concrete is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library hosts in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the properties of concrete is universally compatible with any devices to read.

1,701 citations

01 Jan 2010
TL;DR: A 23-year database of calibrated and validated satellite altimeter measurements is used to investigate global changes in oceanic wind speed and wave height over this period and finds a general global trend of increasing values of windspeed and, to a lesser degree, wave height.
Abstract: Wind speeds over the world’s oceans have increased over the past two decades, as have wave heights. Studies of climate change typically consider measurements or predictions of temperature over extended periods of time. Climate, however, is much more than temperature. Over the oceans, changes in wind speed and the surface gravity waves generated by such winds play an important role. We used a 23-year database of calibrated and validated satellite altimeter measurements to investigate global changes in oceanic wind speed and wave height over this period. We find a general global trend of increasing values of wind speed and, to a lesser degree, wave height, over this period. The rate of increase is greater for extreme events as compared to the mean condition.

737 citations

Journal ArticleDOI
TL;DR: The potential of wireless sensors and IoT in agriculture, as well as the challenges expected to be faced when integrating this technology with the traditional farming practices are highlighted.
Abstract: Despite the perception people may have regarding the agricultural process, the reality is that today's agriculture industry is data-centered, precise, and smarter than ever. The rapid emergence of the Internet-of-Things (IoT) based technologies redesigned almost every industry including “smart agriculture” which moved the industry from statistical to quantitative approaches. Such revolutionary changes are shaking the existing agriculture methods and creating new opportunities along a range of challenges. This article highlights the potential of wireless sensors and IoT in agriculture, as well as the challenges expected to be faced when integrating this technology with the traditional farming practices. IoT devices and communication techniques associated with wireless sensors encountered in agriculture applications are analyzed in detail. What sensors are available for specific agriculture application, like soil preparation, crop status, irrigation, insect and pest detection are listed. How this technology helping the growers throughout the crop stages, from sowing until harvesting, packing and transportation is explained. Furthermore, the use of unmanned aerial vehicles for crop surveillance and other favorable applications such as optimizing crop yield is considered in this article. State-of-the-art IoT-based architectures and platforms used in agriculture are also highlighted wherever suitable. Finally, based on this thorough review, we identify current and future trends of IoT in agriculture and highlight potential research challenges.

514 citations

Journal ArticleDOI
TL;DR: The results show that the use of BIM for transportation infrastructure has been increasing, although the research has mainly been focusing on roads, highways, and bridges, and a major need for a standard neutral exchange format and schema to promote interoperability is revealed.

256 citations

Journal ArticleDOI
TL;DR: The requirements for future geomorphology monitoring are focused on the implementation and linking of in-situ, close-range, air- and spaceborne RS technologies, geomorphic traits, and data science approaches as crucial components for a better understanding of the geomorphic impacts on complex ecosystems.
Abstract: The status, changes, and disturbances in geomorphological regimes can be regarded as controlling and regulating factors for biodiversity. Therefore, monitoring geomorphology at local, regional, and global scales is not only necessary to conserve geodiversity, but also to preserve biodiversity, as well as to improve biodiversity conservation and ecosystem management. Numerous remote sensing (RS) approaches and platforms have been used in the past to enable a cost-effective, increasingly freely available, comprehensive, repetitive, standardized, and objective monitoring of geomorphological characteristics and their traits. This contribution provides a state-of-the-art review for the RS-based monitoring of these characteristics and traits, by presenting examples of aeolian, fluvial, and coastal landforms. Different examples for monitoring geomorphology as a crucial discipline of geodiversity using RS are provided, discussing the implementation of RS technologies such as LiDAR, RADAR, as well as multi-spectral and hyperspectral sensor technologies. Furthermore, data products and RS technologies that could be used in the future for monitoring geomorphology are introduced. The use of spectral traits (ST) and spectral trait variation (STV) approaches with RS enable the status, changes, and disturbances of geomorphic diversity to be monitored. We focus on the requirements for future geomorphology monitoring specifically aimed at overcoming some key limitations of ecological modeling, namely: the implementation and linking of in-situ, close-range, air- and spaceborne RS technologies, geomorphic traits, and data science approaches as crucial components for a better understanding of the geomorphic impacts on complex ecosystems. This paper aims to impart multidimensional geomorphic information obtained by RS for improved utilization in biodiversity monitoring.

254 citations