scispace - formally typeset
Search or ask a question
Author

Mostafa Gandomi

Bio: Mostafa Gandomi is an academic researcher from University of Tehran. The author has contributed to research in topics: Genetic programming & Computational intelligence. The author has an hindex of 9, co-authored 17 publications receiving 364 citations. Previous affiliations of Mostafa Gandomi include K.N.Toosi University of Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: From the results, it has been found that the proposed GEP-based models use simple linkage functions and are highly reliable for time series prediction of COVID-19 cases in India.
Abstract: COVID-19 declared as a global pandemic by WHO, has emerged as the most aggressive disease, impacting more than 90% countries of the world. The virus started from a single human being in China, is now increasing globally at a rate of 3% to 5% daily and has become a never ending process. Some studies even predict that the virus will stay with us forever. India being the second most populous country of the world, is also not saved, and the virus is spreading as a community level transmitter. Therefore, it become really important to analyse the possible impact of COVID-19 in India and forecast how it will behave in the days to come. In present work, prediction models based on genetic programming (GP) have been developed for confirmed cases (CC) and death cases (DC) across three most affected states namely Maharashtra, Gujarat and Delhi as well as whole India. The proposed prediction models are presented using explicit formula, and impotence of prediction variables are studied. Here, statistical parameters and metrics have been used for evaluated and validate the evolved models. From the results, it has been found that the proposed GEP-based models use simple linkage functions and are highly reliable for time series prediction of COVID-19 cases in India.

149 citations

Journal ArticleDOI
TL;DR: This paper presents an alternative approach to formulation of soil classification by means of a promising variant of genetic programming (GP), namely multi expression programming (MEP).
Abstract: This paper presents an alternative approach to formulation of soil classification by means of a promising variant of genetic programming (GP), namely multi expression programming (MEP). Properties of soil, namely plastic limit, liquid limit, color of soil, percentages of gravel, sand, and fine-grained particles are used as input variables to predict the classification of soils. The models are developed using a reliable database obtained from the previously published literature. The results demonstrate that the MEP-based formulas are able to predict the target values to high degree of accuracy. The MEP-based formulation results are found to be more accurate compared with numerical and analytical results obtained by other researchers.

112 citations

Journal ArticleDOI
TL;DR: In this paper, a new design equation is derived to predict the shear strength of slender reinforced concrete (RC) beams without stirrups using gene expression programming (GEP), and the predictor variables included in the analysis are web width, effective depth, concrete compressive strength, amount of longitudinal reinforcement, and shear span to depth ratio.

61 citations

Journal ArticleDOI
TL;DR: The proposed model predicted that the transmission of COVID-19 in China is declining since late March 2020; in Singapore, France, Italy, Germany and Spain the curve has stagnated; in case of Canada, South Africa, Iran and Turkey the number of cases are rising slowly; whereas for USA, UK, Brazil, Russia and Mexico the rate of increase is very high and control measures need to be taken to stop the chains of transmission.
Abstract: COVID-19 or SARS-Cov-2, affecting 6 million people and more than 300,000 deaths, the global pandemic has engulfed more than 90% countries of the world. The virus started from a single organism and is escalating at a rate of 3% to 5% daily and seems to be a never ending process. Understanding the basic dynamics and presenting new predictions models for evaluating the potential effect of the virus is highly crucial. In present work, an evolutionary data analytics method called as Genetic programming (GP) is used to mathematically model the potential effect of coronavirus in 15 most affected countries of the world. Two datasets namely confirmed cases (CC) and death cases (DC) were taken into consideration to estimate, how transmission varied in these countries between January 2020 and May 2020. Further, a percentage rise in the number of daily cases is also shown till 8 June 2020 and it is expected that Brazil will have the maximum rise in CC and USA have the most DC. Also, prediction of number of new CC and DC cases for every one million people in each of these countries is presented. The proposed model predicted that the transmission of COVID-19 in China is declining since late March 2020; in Singapore, France, Italy, Germany and Spain the curve has stagnated; in case of Canada, South Africa, Iran and Turkey the number of cases are rising slowly; whereas for USA, UK, Brazil, Russia and Mexico the rate of increase is very high and control measures need to be taken to stop the chains of transmission. Apart from that, the proposed prediction models are simple mathematical equations and future predictions can be drawn from these general equations. From the experimental results and statistical validation, it can be said that the proposed models use simple linkage functions and provide highly reliable results for time series prediction of COVID-19 in these countries.

45 citations

Journal ArticleDOI
TL;DR: A new model is derived to predict the peak ground acceleration (PGA) utilizing a hybrid method coupling artificial neural network (ANN) and simulated annealing (SA), called SA-ANN, which is superior to the single ANN and other existing attenuation models.
Abstract: A new model is derived to predict the peak ground acceleration (PGA) utilizing a hybrid method coupling artificial neural network (ANN) and simulated annealing (SA), called SA-ANN. The proposed model relates PGA to earthquake source to site distance, earthquake magnitude, average shear-wave velocity, faulting mechanisms, and focal depth. A database of strong ground-motion recordings of 36 earthquakes, which happened in Iran’s tectonic regions, is used to establish the model. For more validity verification, the SA-ANN model is employed to predict the PGA of a part of the database beyond the training data domain. The proposed SA-ANN model is compared with the simple ANN in addition to 10 well-known models proposed in the literature. The proposed model performance is superior to the single ANN and other existing attenuation models. The SA-ANN model is highly correlated to the actual records (R ¼ 0.835 and r ¼ 0.0908) and it is subsequently converted into a tractable design equation.

41 citations


Cited by
More filters
Journal ArticleDOI

1,604 citations

Journal ArticleDOI
TL;DR: The role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted and unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm.
Abstract: Learning incorporates a broad range of complex procedures. Machine learning (ML) is a subdivision of artificial intelligence based on the biological learning process. The ML approach deals with the design of algorithms to learn from machine readable data. ML covers main domains such as data mining, difficult-to-program applications, and software applications. It is a collection of a variety of algorithms (e.g. neural networks, support vector machines, self-organizing map, decision trees, random forests, case-based reasoning, genetic programming, etc.) that can provide multivariate, nonlinear, nonparametric regression or classification. The modeling capabilities of the ML-based methods have resulted in their extensive applications in science and engineering. Herein, the role of ML as an effective approach for solving problems in geosciences and remote sensing will be highlighted. The unique features of some of the ML techniques will be outlined with a specific attention to genetic programming paradigm. Furthermore, nonparametric regression and classification illustrative examples are presented to demonstrate the efficiency of ML for tackling the geosciences and remote sensing problems.

701 citations

Journal ArticleDOI
TL;DR: This paper introduces the chaos theory into the GWO algorithm with the aim of accelerating its global convergence speed, and shows that with an appropriate chaotic map, CGWO can clearly outperform standard GWO, with very good performance in comparison with other algorithms and in application to constrained optimization problems.

309 citations

Journal ArticleDOI
TL;DR: Examination of several Machine Learning models for forecasting the mechanical properties of concrete, including artificial neural networks, support vector machine, decision trees, and evolutionary algorithms are examined.

241 citations

Journal ArticleDOI
TL;DR: LGP, GEP, and MEP are new variants of GP that make a clear distinction between the genotype and the phenotype of an individual and are more compatible with computer architectures, resulting in a significant speedup in their execution.
Abstract: Purpose – The complexity of analysis of geotechnical behavior is due to multivariable dependencies of soil and rock responses. In order to cope with this complex behavior, traditional forms of engineering design solutions are reasonably simplified. Incorporating simplifying assumptions into the development of the traditional models may lead to very large errors. The purpose of this paper is to illustrate capabilities of promising variants of genetic programming (GP), namely linear genetic programming (LGP), gene expression programming (GEP), and multi‐expression programming (MEP) by applying them to the formulation of several complex geotechnical engineering problems.Design/methodology/approach – LGP, GEP, and MEP are new variants of GP that make a clear distinction between the genotype and the phenotype of an individual. Compared with the traditional GP, the LGP, GEP, and MEP techniques are more compatible with computer architectures. This results in a significant speedup in their execution. These method...

236 citations