scispace - formally typeset
Search or ask a question
Author

Motoaki Kawanabe

Bio: Motoaki Kawanabe is an academic researcher from Fraunhofer Society. The author has contributed to research in topics: Subspace topology & Gaussian. The author has an hindex of 30, co-authored 102 publications receiving 6626 citations. Previous affiliations of Motoaki Kawanabe include Fraunhofer Institute for Open Communication Systems.


Papers
More filters
Journal ArticleDOI
TL;DR: The theoretical background of the common spatial pattern (CSP) algorithm, a popular method in brain-computer interface (BCD research), is elucidated and tricks of the trade for achieving a powerful CSP performance are revealed.
Abstract: Due to the volume conduction multichannel electroencephalogram (EEG) recordings give a rather blurred image of brain activity. Therefore spatial filters are extremely useful in single-trial analysis in order to improve the signal-to-noise ratio. There are powerful methods from machine learning and signal processing that permit the optimization of spatio-temporal filters for each subject in a data dependent fashion beyond the fixed filters based on the sensor geometry, e.g., Laplacians. Here we elucidate the theoretical background of the common spatial pattern (CSP) algorithm, a popular method in brain-computer interface (BCD research. Apart from reviewing several variants of the basic algorithm, we reveal tricks of the trade for achieving a powerful CSP performance, briefly elaborate on theoretical aspects of CSP, and demonstrate the application of CSP-type preprocessing in our studies of the Berlin BCI (BBCI) project.

1,799 citations

Journal Article
TL;DR: This paper proposes a procedure which (based on a set of assumptions) allows to explain the decisions of any classification method.
Abstract: After building a classifier with modern tools of machine learning we typically have a black box at hand that is able to predict well for unseen data. Thus, we get an answer to the question what is the most likely label of a given unseen data point. However, most methods will provide no answer why the model predicted a particular label for a single instance and what features were most influential for that particular instance. The only method that is currently able to provide such explanations are decision trees. This paper proposes a procedure which (based on a set of assumptions) allows to explain the decisions of any classification method.

888 citations

Proceedings Article
03 Dec 2007
TL;DR: This paper proposes a direct importance estimation method that does not involve density estimation and is equipped with a natural cross validation procedure and hence tuning parameters such as the kernel width can be objectively optimized.
Abstract: A situation where training and test samples follow different input distributions is called covariate shift. Under covariate shift, standard learning methods such as maximum likelihood estimation are no longer consistent—weighted variants according to the ratio of test and training input densities are consistent. Therefore, accurately estimating the density ratio, called the importance, is one of the key issues in covariate shift adaptation. A naive approach to this task is to first estimate training and test input densities separately and then estimate the importance by taking the ratio of the estimated densities. However, this naive approach tends to perform poorly since density estimation is a hard task particularly in high dimensional cases. In this paper, we propose a direct importance estimation method that does not involve density estimation. Our method is equipped with a natural cross validation procedure and hence tuning parameters such as the kernel width can be objectively optimized. Simulations illustrate the usefulness of our approach.

785 citations

Journal ArticleDOI
TL;DR: This paper proposes a direct importance estimation method that does not involve density estimation and is equipped with a natural cross validation procedure and hence tuning parameters such as the kernel width can be objectively optimized.
Abstract: A situation where training and test samples follow different input distributions is called covariate shift. Under covariate shift, standard learning methods such as maximum likelihood estimation are no longer consistent—weighted variants according to the ratio of test and training input densities are consistent. Therefore, accurately estimating the density ratio, called the importance, is one of the key issues in covariate shift adaptation. A naive approach to this task is to first estimate training and test input densities separately and then estimate the importance by taking the ratio of the estimated densities. However, this naive approach tends to perform poorly since density estimation is a hard task particularly in high dimensional cases. In this paper, we propose a direct importance estimation method that does not involve density estimation. Our method is equipped with a natural cross validation procedure and hence tuning parameters such as the kernel width can be objectively optimized. Furthermore, we give rigorous mathematical proofs for the convergence of the proposed algorithm. Simulations illustrate the usefulness of our approach.

418 citations

Book
30 Mar 2012
TL;DR: This book focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs and outputs change but the conditional distribution of outputs is unchanged, and presents machine learning theory, algorithms, and applications to overcome this variety of non- stationarity.
Abstract: As the power of computing has grown over the past few decades, the field of machine learning has advanced rapidly in both theory and practice. Machine learning methods are usually based on the assumption that the data generation mechanism does not change over time. Yet real-world applications of machine learning, including image recognition, natural language processing, speech recognition, robot control, and bioinformatics, often violate this common assumption. Dealing with non-stationarity is one of modern machine learning's greatest challenges. This book focuses on a specific non-stationary environment known as covariate shift, in which the distributions of inputs (queries) change but the conditional distribution of outputs (answers) is unchanged, and presents machine learning theory, algorithms, and applications to overcome this variety of non-stationarity. After reviewing the state-of-the-art research in the field, the authors discuss topics that include learning under covariate shift, model selection, importance estimation, and active learning. They describe such real world applications of covariate shift adaption as brain-computer interface, speaker identification, and age prediction from facial images. With this book, they aim to encourage future research in machine learning, statistics, and engineering that strives to create truly autonomous learning machines able to learn under non-stationarity.

384 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift are discussed.
Abstract: A major assumption in many machine learning and data mining algorithms is that the training and future data must be in the same feature space and have the same distribution. However, in many real-world applications, this assumption may not hold. For example, we sometimes have a classification task in one domain of interest, but we only have sufficient training data in another domain of interest, where the latter data may be in a different feature space or follow a different data distribution. In such cases, knowledge transfer, if done successfully, would greatly improve the performance of learning by avoiding much expensive data-labeling efforts. In recent years, transfer learning has emerged as a new learning framework to address this problem. This survey focuses on categorizing and reviewing the current progress on transfer learning for classification, regression, and clustering problems. In this survey, we discuss the relationship between transfer learning and other related machine learning techniques such as domain adaptation, multitask learning and sample selection bias, as well as covariate shift. We also explore some potential future issues in transfer learning research.

18,616 citations

Book
23 Nov 2005
TL;DR: The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics, and deals with the supervised learning problem for both regression and classification.
Abstract: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

11,357 citations

Proceedings ArticleDOI
13 Aug 2016
TL;DR: In this article, the authors propose LIME, a method to explain models by presenting representative individual predictions and their explanations in a non-redundant way, framing the task as a submodular optimization problem.
Abstract: Despite widespread adoption, machine learning models remain mostly black boxes. Understanding the reasons behind predictions is, however, quite important in assessing trust, which is fundamental if one plans to take action based on a prediction, or when choosing whether to deploy a new model. Such understanding also provides insights into the model, which can be used to transform an untrustworthy model or prediction into a trustworthy one. In this work, we propose LIME, a novel explanation technique that explains the predictions of any classifier in an interpretable and faithful manner, by learning an interpretable model locally varound the prediction. We also propose a method to explain models by presenting representative individual predictions and their explanations in a non-redundant way, framing the task as a submodular optimization problem. We demonstrate the flexibility of these methods by explaining different models for text (e.g. random forests) and image classification (e.g. neural networks). We show the utility of explanations via novel experiments, both simulated and with human subjects, on various scenarios that require trust: deciding if one should trust a prediction, choosing between models, improving an untrustworthy classifier, and identifying why a classifier should not be trusted.

11,104 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Proceedings Article
01 Jan 2014
TL;DR: It is found that there is no distinction between individual highlevel units and random linear combinations of high level units, according to various methods of unit analysis, and it is suggested that it is the space, rather than the individual units, that contains of the semantic information in the high layers of neural networks.
Abstract: Deep neural networks are highly expressive models that have recently achieved state of the art performance on speech and visual recognition tasks. While their expressiveness is the reason they succeed, it also causes them to learn uninterpretable solutions that could have counter-intuitive properties. In this paper we report two such properties. First, we find that there is no distinction between individual high level units and random linear combinations of high level units, according to various methods of unit analysis. It suggests that it is the space, rather than the individual units, that contains of the semantic information in the high layers of neural networks. Second, we find that deep neural networks learn input-output mappings that are fairly discontinuous to a significant extend. We can cause the network to misclassify an image by applying a certain imperceptible perturbation, which is found by maximizing the network's prediction error. In addition, the specific nature of these perturbations is not a random artifact of learning: the same perturbation can cause a different network, that was trained on a different subset of the dataset, to misclassify the same input.

9,561 citations