scispace - formally typeset
Search or ask a question
Author

Motomu Shimaoka

Bio: Motomu Shimaoka is an academic researcher from Mie University. The author has contributed to research in topics: Integrin & Ligand (biochemistry). The author has an hindex of 49, co-authored 175 publications receiving 8075 citations. Previous affiliations of Motomu Shimaoka include Harvard University & Boston Children's Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: These long-range structural rearrangements of the entire integrin molecule involving multiple interdomain contacts appear closely linked to conformational changes in the I domain, which result in increased affinity and competence for ligand binding.
Abstract: Integrins are a structurally elaborate family of heterodimers that mediate divalent cation-dependent cell adhesion in a wide range of biological contexts. The inserted (I) domain binds ligand in the subset of integrins in which it is present. Its structure has been determined in two alternative conformations, termed open and closed. In striking similarity to signaling G proteins, rearrangement of a Mg(2+)-binding site is linked to large conformational movements in distant backbone regions. Mutations have been used to stabilize either the closed or open structures. These show that the snapshots of the open conformation seen only in the presence of a ligand or a ligand mimetic represent a high-affinity, ligand-binding conformation, whereas those of the closed conformation correspond to a low-affinity conformation. The C-terminal alpha-helix moves 10 A down the side of the domain in the open conformation. Locking in the conformation of the preceding loop is sufficient to increase affinity for ligand 9000-fold. This C-terminal "bell-rope" provides a mechanism for linkage to conformational movements in other domains. The transition from the closed to open conformation has been implicated in fast (<1 s) regulation of integrin affinity in response to activation signals from inside the cell. Recent integrin structures and functional studies reveal interactions between beta-propeller, I, and I-like domains in the headpiece, and a critical role for integrin EGF domains in the stalk region. These studies suggest that the headpiece of the integrin faces down toward the membrane in the inactive conformation and extends upward in a "switchblade"-like opening motion upon activation. These long-range structural rearrangements of the entire integrin molecule involving multiple interdomain contacts appear closely linked to conformational changes in the I domain, which result in increased affinity and competence for ligand binding.

537 citations

Journal ArticleDOI
10 Jan 2003-Cell
TL;DR: Liganded and unliganded structures for both high- and intermediate-affinity mutant I domains reveal that ligand binding can induce conformational change in the alpha L I domain and that allosteric signals can convert the closed conformation to intermediate or open conformations without ligandbinding.

530 citations

Journal ArticleDOI
01 Feb 2008-Science
TL;DR: This study reveals CyD1 to be a potential anti-inflammatory target, and suggests that the application of similar modes of targeting by siRNA may be feasible in other therapeutic settings.
Abstract: Cyclin D1 (CyD1) is a pivotal cell cycle–regulatory molecule and a well-studied therapeutic target for cancer. Although CyD1 is also strongly up-regulated at sites of inflammation, its exact roles in this context remain uncharacterized. To address this question, we developed a strategy for selectively silencing CyD1 in leukocytes in vivo. Targeted stabilized nanoparticles (tsNPs) were loaded with CyD1–small interfering RNA (siRNA). Antibodies to β7 integrin (β7 I) were then used to target specific leukocyte subsets involved in gut inflammation. Systemic application of β7 I-tsNPs silenced CyD1 in leukocytes and reversed experimentally induced colitis in mice by suppressing leukocyte proliferation and T helper cell 1 cytokine expression. This study reveals CyD1 to be a potential anti-inflammatory target, and suggests that the application of similar modes of targeting by siRNA may be feasible in other therapeutic settings.

504 citations

Journal ArticleDOI
TL;DR: Progress in the development of integrin antagonists has resulted in their clinical application and has shed new light on integrin biology, and each of these classes affects the equilibria that relate integrin conformational states, but in different ways.
Abstract: Integrins are a structurally elaborate family of adhesion molecules that transmit signals bi-directionally across the plasma membrane by undergoing large-scale structural rearrangements. By regulating cell-cell and cell-matrix contacts, integrins participate in a wide range of biological processes, including development, tissue repair, angiogenesis, inflammation and haemostasis. From a therapeutic standpoint, integrins are probably the most important class of cell-adhesion receptors. Recent progress in the development of integrin antagonists has resulted in their clinical application and has shed new light on integrin biology. On the basis of their mechanism of action, small-molecule integrin antagonists fall into three different classes. Each of these classes affect the equilibria that relate integrin conformational states, but in different ways.

334 citations

Journal ArticleDOI
TL;DR: It is shown that antibody-protamine fusion proteins targeting the human integrin lymphocyte function-associated antigen-1 (LFA-1) efficiently deliver siRNAs and specifically induce silencing in primary lymphocytes, monocytes, and dendritic cells.
Abstract: Silencing gene expression by RNAi is a powerful method for exploring gene function and validating drug targets and potentially for therapy. Lymphocytes and other primary blood cells are resistant to lipid-based transfection in vitro and are difficult to target in vivo. We show here that antibody-protamine fusion proteins targeting the human integrin lymphocyte function-associated antigen-1 (LFA-1) efficiently deliver siRNAs and specifically induce silencing in primary lymphocytes, monocytes, and dendritic cells. Moreover, a fusion protein constructed from an antibody that preferentially recognizes activation-dependent conformational changes in LFA-1 selectively targets activated leukocytes and can be used to suppress gene expression and cell proliferation only in activated lymphocytes. The siRNA-fusion protein complexes do not cause lymphocyte activation or induce IFN responses. K562 cells expressing latent WT or constitutively activated LFA-1 engrafted in the lungs of SCID mice are selectively targeted by intravenously injected fusion protein–siRNA complexes, demonstrating the potential in vivo applicability of LFA-1-directed siRNA delivery.

282 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
20 Sep 2002-Cell
TL;DR: Current structural and cell biological data suggest models for how integrins transmit signals between their extracellular ligand binding adhesion sites and their cytoplasmic domains, which link to the cytoskeleton and to signal transduction pathways.

8,275 citations

Journal ArticleDOI
TL;DR: The arsenal of nanocarriers and molecules available for selective tumour targeting, and the challenges in cancer treatment are detailed and emphasized.
Abstract: Nanotechnology has the potential to revolutionize cancer diagnosis and therapy. Advances in protein engineering and materials science have contributed to novel nanoscale targeting approaches that may bring new hope to cancer patients. Several therapeutic nanocarriers have been approved for clinical use. However, to date, there are only a few clinically approved nanocarriers that incorporate molecules to selectively bind and target cancer cells. This review examines some of the approved formulations and discusses the challenges in translating basic research to the clinic. We detail the arsenal of nanocarriers and molecules available for selective tumour targeting, and emphasize the challenges in cancer treatment.

7,443 citations

Journal ArticleDOI
TL;DR: This Review focuses on new aspects of one of the central paradigms of inflammation and immunity — the leukocyte adhesion cascade.
Abstract: To get to the site of inflammation, leukocytes must first adhere to and traverse the blood-vessel wall, events that occur in a cascade-like manner. But what are the exact steps in this cascade and what molecules are involved?

3,917 citations

Journal ArticleDOI
TL;DR: An update on the progress of RNAi therapeutics is provided and novel synthetic materials for the encapsulation and intracellular delivery of nucleic acids are highlighted.
Abstract: In the 10 years that have passed since the Nobel prize-winning discovery of RNA interference (RNAi), billions of dollars have been invested in the therapeutic application of gene silencing in humans. Today, there are promising data from ongoing clinical trials for the treatment of age-related macular degeneration and respiratory syncytial virus. Despite these early successes, however, the widespread use of RNAi therapeutics for disease prevention and treatment requires the development of clinically suitable, safe and effective drug delivery vehicles. Here, we provide an update on the progress of RNAi therapeutics and highlight novel synthetic materials for the encapsulation and intracellular delivery of nucleic acids.

2,710 citations