scispace - formally typeset
Search or ask a question

Showing papers by "Moungi G. Bawendi published in 2013"


Journal ArticleDOI
TL;DR: In this paper, the authors summarized the key advantages of using quantum dots as luminophores in light-emitting devices (LEDs) and outlined the operating mechanisms of four types of QD-LEDs.
Abstract: This Review article summarizes the key advantages of using quantum dots (QDs) as luminophores in light-emitting devices (LEDs) and outlines the operating mechanisms of four types of QD-LED. The key scientific and technological challenges facing QD-LED commercialization are identified, together with on-going strategies to overcome these challenges.

2,086 citations


Journal ArticleDOI
TL;DR: In this paper, the synthesis of high-quality CdSe-CdS core-shell quantum dots in an optimized process that maintains a slow growth rate of the shell through the use of octanethiol and cadmium oleate as precursors.
Abstract: High particle uniformity, high photoluminescence quantum yields, narrow and symmetric emission spectral lineshapes and minimal single-dot emission intermittency (known as blinking) have been recognized as universal requirements for the successful use of colloidal quantum dots in nearly all optical applications. However, synthesizing samples that simultaneously meet all these four criteria has proven challenging. Here, we report the synthesis of such high-quality CdSe-CdS core-shell quantum dots in an optimized process that maintains a slow growth rate of the shell through the use of octanethiol and cadmium oleate as precursors. In contrast with previous observations, single-dot blinking is significantly suppressed with only a relatively thin shell. Furthermore, we demonstrate the elimination of the ensemble luminescence photodarkening that is an intrinsic consequence of quantum dot blinking statistical ageing. Furthermore, the small size and high photoluminescence quantum yields of these novel quantum dots render them superior in vivo imaging agents compared with conventional quantum dots. We anticipate these quantum dots will also result in significant improvement in the performance of quantum dots in other applications such as solid-state lighting and illumination.

1,136 citations


Journal ArticleDOI
TL;DR: In this paper, a red quantum-dot light-emitting diodes with an external quantum efficiency of 18, close to the theoretical maximum of 20%, were reported, using a layer of zinc oxide nanocrystals providing highly effective electron transport.
Abstract: Red quantum-dot light-emitting diodes with an external quantum efficiency of 18%, close to the theoretical maximum of 20%, are reported. Using a layer of zinc oxide nanocrystals provides highly effective electron transport, resulting in devices with a low operating voltage and a high luminous power efficiency of 25 lm W−1.

1,009 citations


Journal ArticleDOI
TL;DR: Losartan reduces solid stress in tumours resulting in increased vascular perfusion, thereby potentiating chemotherapy and reducing hypoxia in breast and pancreatic cancer models, suggesting that angiotensin inhibitors —inexpensive drugs with decades of safe use — could be rapidly repurposed as cancer therapeutics.
Abstract: Cancer and stromal cells actively exert physical forces (solid stress) to compress tumour blood vessels, thus reducing vascular perfusion. Tumour interstitial matrix also contributes to solid stress, with hyaluronan implicated as the primary matrix molecule responsible for vessel compression because of its swelling behaviour. Here we show, unexpectedly, that hyaluronan compresses vessels only in collagen-rich tumours, suggesting that collagen and hyaluronan together are critical targets for decompressing tumour vessels. We demonstrate that the angiotensin inhibitor losartan reduces stromal collagen and hyaluronan production, associated with decreased expression of profibrotic signals TGF-b1, CCN2 and ET-1, downstream of angiotensin-II-receptor-1 inhibition. Consequently, losartan reduces solid stress in tumours resulting in increased vascular perfusion. Through this physical mechanism, losartan improves drug and oxygen delivery to tumours, thereby potentiating chemotherapy and reducing hypoxia in breast and pancreatic cancer models. Thus, angiotensin inhibitors — inexpensive drugs with decades of safe use — could be rapidly repurposed as cancer

674 citations


01 Oct 2013
TL;DR: In this paper, the angiotensin inhibitor losartan reduces stromal collagen and hyaluronan production, associated with decreased expression of profibrotic signals TGF-β1, CCN2 and ET-1.
Abstract: Cancer and stromal cells actively exert physical forces (solid stress) to compress tumour blood vessels, thus reducing vascular perfusion. Tumour interstitial matrix also contributes to solid stress, with hyaluronan implicated as the primary matrix molecule responsible for vessel compression because of its swelling behaviour. Here we show, unexpectedly, that hyaluronan compresses vessels only in collagen-rich tumours, suggesting that collagen and hyaluronan together are critical targets for decompressing tumour vessels. We demonstrate that the angiotensin inhibitor losartan reduces stromal collagen and hyaluronan production, associated with decreased expression of profibrotic signals TGF-β1, CCN2 and ET-1, downstream of angiotensin-II-receptor-1 inhibition. Consequently, losartan reduces solid stress in tumours resulting in increased vascular perfusion. Through this physical mechanism, losartan improves drug and oxygen delivery to tumours, thereby potentiating chemotherapy and reducing hypoxia in breast and pancreatic cancer models. Thus, angiotensin inhibitors —inexpensive drugs with decades of safe use — could be rapidly repurposed as cancer therapeutics.

575 citations


Journal ArticleDOI
TL;DR: Vertical arrays of ZnO nanowires can decouple light absorption from carrier collection in PbS quantum dot solar cells and increase power conversion efficiencies by 35% and ordered bulk heterojunction devices achieve short-circuit current densities and efficiencies.
Abstract: Vertical arrays of ZnO nanowires can decouple light absorption from carrier collection in PbS quantum dot solar cells and increase power conversion efficiencies by 35%. The resulting ordered bulk heterojunction devices achieve short-circuit current densities in excess of 20 mA cm(-2) and efficiencies of up to 4.9%.

262 citations


Journal ArticleDOI
TL;DR: Growth of highly uniform and well-aligned ZnO nanowire arrays on graphene by modifying the graphene surface with conductive polymer interlayers is demonstrated and it is demonstrated that it can serve as a viable replacement for ITO in various photovoltaic device configurations.
Abstract: Growth of semiconducting nanostructures on graphene would open up opportunities for the development of flexible optoelectronic devices, but challenges remain in preserving the structural and electrical properties of graphene during this process. We demonstrate growth of highly uniform and well-aligned ZnO nanowire arrays on graphene by modifying the graphene surface with conductive polymer interlayers. On the basis of this structure, we then demonstrate graphene cathode-based hybrid solar cells using two different photoactive materials, PbS quantum dots and the conjugated polymer P3HT, with AM 1.5G power conversion efficiencies of 4.2% and 0.5%, respectively, approaching the performance of ITO-based devices with similar architectures. Our method preserves beneficial properties of graphene and demonstrates that it can serve as a viable replacement for ITO in various photovoltaic device configurations.

193 citations


Journal ArticleDOI
TL;DR: In this paper, the authors discuss the key advantages of using colloidal quantum dots as luminophores in LEDs and outline the 19-year evolution of four types of QLEDs that have seen efficiencies rise from less than 0.01% to 18%.
Abstract: The mainstream commercialization of colloidal quantum dots (QDs) for light-emitting applications has begun: Sony televisions emitting QD-enhanced colors are now on sale. The bright and uniquely size-tunable colors of solution-processable semiconducting QDs highlight the potential of electroluminescent QD light-emitting devices (QLEDs) for use in energy-efficient, high-color-quality thin-film display and solid-state lighting applications. Indeed, this year’s report of record-efficiency electrically driven QLEDs rivaling the most efficient molecular organic LEDs, together with the emergence of full-color QLED displays, foreshadow QD technologies that will transcend the optically excited QD-enhanced products already available. In this article, we discuss the key advantages of using QDs as luminophores in LEDs and outline the 19-year evolution of four types of QLEDs that have seen efficiencies rise from less than 0.01% to 18%. With an emphasis on the latest advances, we identify the key scientific and technological challenges facing the commercialization of QLEDs. A quantitative analysis, based on published small-scale synthetic procedures, allows us to estimate the material costs of QDs typical in light-emitting applications when produced in large quantities and to assess their commercial viability.

188 citations


Journal ArticleDOI
21 Jul 2013
TL;DR: In this paper, the femto-photography technique was proposed to capture and visualize the propagation of light. But, at such fast resolution, the notion of time-unwarping between the camera's and the world's space-time coordinate systems to take into account effects associated with the finite speed of light was not considered.
Abstract: We present femto-photography, a novel imaging technique to capture and visualize the propagation of light. With an effective exposure time of 1.85 picoseconds (ps) per frame, we reconstruct movies of ultrafast events at an equivalent resolution of about one half trillion frames per second. Because cameras with this shutter speed do not exist, we re-purpose modern imaging hardware to record an ensemble average of repeatable events that are synchronized to a streak sensor, in which the time of arrival of light from the scene is coded in one of the sensor's spatial dimensions. We introduce reconstruction methods that allow us to visualize the propagation of femtosecond light pulses through macroscopic scenes; at such fast resolution, we must consider the notion of time-unwarping between the camera's and the world's space-time coordinate systems to take into account effects associated with the finite speed of light. We apply our femto-photography technique to visualizations of very different scenes, which allow us to observe the rich dynamics of time-resolved light transport effects, including scattering, specular reflections, diffuse interreflections, diffraction, caustics, and subsurface scattering. Our work has potential applications in artistic, educational, and scientific visualizations; industrial imaging to analyze material properties; and medical imaging to reconstruct subsurface elements. In addition, our time-resolved technique may motivate new forms of computational photography.

152 citations


Journal ArticleDOI
TL;DR: It is demonstrated that single-particle linewidths vary significantly from batch to batch and can be synthetically controlled, delineate the synthetic challenges facing underdeveloped nanomaterials such as InP and InAs core-shell particles and introduce new avenues for the synthetic optimization of fluorescent nanoparticles.
Abstract: The average single-nanocrystal spectral linewidth within an ensemble of nanocrystal emitters in solution can be directly and quantitatively measured using photon-correlation Fourier spectroscopy (S-PCFS). Variations in single-nanocrystal linewidths between batches are found to be significant and synthetically tunable, introducing new avenues for the optimization of nanocrystals for optical applications.

139 citations


01 Jul 2013
TL;DR: This work introduces reconstruction methods that allow us to visualize the propagation of femtosecond light pulses through macroscopic scenes, and introduces the notion of time-unwarping between the camera's and the world's space-time coordinate systems to take into account effects associated with the finite speed of light.
Abstract: We present femto-photography, a novel imaging technique to capture and visualize the propagation of light. With an effective exposure time of 1.85 picoseconds (ps) per frame, we reconstruct movies of ultrafast events at an equivalent resolution of about one half trillion frames per second. Because cameras with this shutter speed do not exist, we re-purpose modern imaging hardware to record an ensemble average of repeatable events that are synchronized to a streak sensor, in which the time of arrival of light from the scene is coded in one of the sensor's spatial dimensions. We introduce reconstruction methods that allow us to visualize the propagation of femtosecond light pulses through macroscopic scenes; at such fast resolution, we must consider the notion of time-unwarping between the camera's and the world's space-time coordinate systems to take into account effects associated with the finite speed of light. We apply our femto-photography technique to visualizations of very different scenes, which allow us to observe the rich dynamics of time-resolved light transport effects, including scattering, specular reflections, diffuse interreflections, diffraction, caustics, and subsurface scattering. Our work has potential applications in artistic, educational, and scientific visualizations; industrial imaging to analyze material properties; and medical imaging to reconstruct subsurface elements. In addition, our time-resolved technique may motivate new forms of computational photography.

Journal ArticleDOI
TL;DR: This work demonstrates a solar cell based on the heterojunction formed between PbS colloidal quantum dot layers and CdS thin films that are deposited via a solution process at 80 °C, and exhibits an average power conversion efficiency of 3.5%.
Abstract: PbS colloidal quantum dot heterojunction solar cells have shown significant improvements in performance, mostly based on devices that use high-temperature annealed transition metal oxides to create rectifying junctions with quantum dot thin films. Here, we demonstrate a solar cell based on the heterojunction formed between PbS colloidal quantum dot layers and CdS thin films that are deposited via a solution process at 80 °C. The resultant device, employing a 1,2-ethanedithiol ligand exchange scheme, exhibits an average power conversion efficiency of 3.5%. Through a combination of thickness-dependent current density–voltage characteristics, optical modeling, and capacitance measurements, the combined diffusion length and depletion width in the PbS quantum dot layer is found to be approximately 170 nm.

01 Feb 2013
TL;DR: The synthesis of such high-quality CdSe-CdS core-shell quantum dots in an optimized process that maintains a slow growth rate of the shell through the use of octanethiol and cadmium oleate as precursors demonstrates the elimination of the ensemble luminescence photodarkening that is an intrinsic consequence of quantum dot blinking statistical ageing.
Abstract: High particle uniformity, high photoluminescence quantum yields, narrow and symmetric emission spectral lineshapes and minimal single-dot emission intermittency (known as blinking) have been recognized as universal requirements for the successful use of colloidal quantum dots in nearly all optical applications. However, synthesizing samples that simultaneously meet all these four criteria has proven challenging. Here, we report the synthesis of such high-quality CdSe-CdS core-shell quantum dots in an optimized process that maintains a slow growth rate of the shell through the use of octanethiol and cadmium oleate as precursors. In contrast with previous observations, single-dot blinking is significantly suppressed with only a relatively thin shell. Furthermore, we demonstrate the elimination of the ensemble luminescence photodarkening that is an intrinsic consequence of quantum dot blinking statistical ageing. Furthermore, the small size and high photoluminescence quantum yields of these novel quantum dots render them superior in vivo imaging agents compared with conventional quantum dots. We anticipate these quantum dots will also result in significant improvement in the performance of quantum dots in other applications such as solid-state lighting and illumination.

Journal ArticleDOI
TL;DR: In this paper, the authors review progress in the development of highly luminescent core-shell quantum dots of different semiconductor families in view of their integration in light-emitting applications.
Abstract: Emissive saturated colors are key components of new generations of lighting and display technologies. Quantum dots have evolved in the past two decades to fulfill many of the requirements of color purity, stability, and efficiency that are critical to transitioning these materials from the laboratory into these markets. A fundamental feature of quantum dots is the tunability of their emission color through precise control of their size and composition, giving access to UV, visible, and near-infrared wavelengths. Continuing improvements in engineering core–shell quantum dot structures, where a 1–10 nm binary, ternary, or alloyed semiconductor core particle is surrounded by a shell composed of one or more semiconductors of a wider bandgap, have resulted in materials with fluorescence quantum yields that approach unity, narrow symmetric spectral line shapes, and remarkable stabilities. In this article, we review progress in the development of highly luminescent core–shell quantum dots of different semiconductor families in view of their integration in light-emitting applications. CdSe-based quantum dots already fulfill many of the requirements of lighting and display applications in terms of fluorescence quantum yield, color purity, and stability.

Journal ArticleDOI
TL;DR: Experiments using cultured cells and live mice demonstrate that the microscopic arrangement of surface charges strongly influence nonspecific binding, clearance behavior, and in vivo transport of nanoparticles.
Abstract: Detailed Charge arrangements: A new set of zwitterionic quantum dots were synthesized and used to study the influence of microscopic charge arrangements on the in vivo behavior of nanoparticles. Experiments using cultured cells and live mice demonstrate that the microscopic arrangement of surface charges strongly influence nonspecific binding, clearance behavior, and in vivo transport of nanoparticles.

Journal ArticleDOI
TL;DR: The QD serves as a photon antenna, enhancing porphyrin emission under both one- and two-photon excitation, demonstrating that QD-palladium p Morphyrin conjugates may be used for oxygen sensing over physiological oxygen ranges.
Abstract: Supramolecular assemblies of a quantum dot (QD) associated to palladium(II) porphyrins have been developed to detect oxygen (pO2) in organic solvents. Palladium porphyrins are sensitive in the 0–160 Torr range, making them ideal phosphors for in vivo biological oxygen quantification. Porphyrins with meso pyridyl substituents bind to the surface of the QD to produce self-assembled nanosensors. Appreciable overlap between QD emission and porphyrin absorption features results in efficient Forster resonance energy transfer (FRET) for signal transduction in these sensors. The QD serves as a photon antenna, enhancing porphyrin emission under both one- and two-photon excitation, demonstrating that QD-palladium porphyrin conjugates may be used for oxygen sensing over physiological oxygen ranges.

01 Oct 2013
TL;DR: Optical chemosensors that feature a quantum dot and an analyte-responsive dye permit pH, oxygen, and glucose to be monitored dynamically within the tumor microenvironment by using multiphoton imaging.
Abstract: Acidity, hypoxia, and glucose levels characterize the tumor microenvironment rendering pH, pO2, and pGlucose, respectively, important indicators of tumor health. To this end, understanding how these parameters change can be a powerful tool for the development of novel and effective therapeutics. We have designed optical chemosensors that feature a quantum dot and an analyte-responsive dye. These noninvasive chemosensors permit pH, oxygen, and glucose to be monitored dynamically within the tumor microenvironment by using multiphoton imaging.

Journal ArticleDOI
TL;DR: The results indicate that in the tested molecular aggregates, even when the static structure disorder dominates exciton dephasing dynamics, the extent of exciton delocalization may be limited by dynamical fluctuations, mainly exciton-phonon coupling.
Abstract: We present two-dimensional Fourier transform optical spectroscopy measurements of two types of molecular J-aggregate thin films and show that temperature-dependent dynamical effects govern exciton delocalization at all temperatures, even in the presence of significant inhomogeneity. Our results indicate that in the tested molecular aggregates, even when the static structure disorder dominates exciton dephasing dynamics, the extent of exciton delocalization may be limited by dynamical fluctuations, mainly exciton–phonon coupling. Thus inhomogeneous dephasing may mediate the exciton coherence time whereas dynamical fluctuations mediate the exciton coherence length.

Journal ArticleDOI
TL;DR: It is found that the effective density of trapped carriers ranges from 1 in 10 to 2 in 10,000 quantum dots, depending on ligand treatment, and that nonradiative exciton quenching, as opposed to recombination with trapped carriers, is likely the limiting mechanism in PbS-quantum-dot-based photovoltaic devices.
Abstract: We present a quantitative measurement of the number of trapped carriers combined with a measurement of exciton quenching to assess limiting mechanisms for current losses in PbS-quantum-dot-based photovoltaic devices. We use photocurrent intensity dependence and short-wave infrared transient photoluminescence and correlate these with device performance. We find that the effective density of trapped carriers ranges from 1 in 10 to 1 in 10 000 quantum dots, depending on ligand treatment, and that nonradiative exciton quenching, as opposed to recombination with trapped carriers, is likely the limiting mechanism in these devices.

Journal ArticleDOI
TL;DR: This technique distinguishes between discrete and continuous dynamics and directly reveals that the quasicontinuous spectral diffusion observed using conventional spectroscopy is composed of rapid, discrete spectral jumps.
Abstract: We measure the anomalous spectral diffusion of single colloidal quantum dots over eight temporal decades simultaneously by combining single-molecule spectroscopy and photon-correlation Fourier spectroscopy. Our technique distinguishes between discrete and continuous dynamics and directly reveals that the quasicontinuous spectral diffusion observed using conventional spectroscopy is composed of rapid, discrete spectral jumps. Despite their multiple time scales, these dynamics can be captured by a single mechanism whose parameters vary widely between dots and over time in individual dots.

Journal ArticleDOI
TL;DR: In this article, the magnetic properties of Zwitterionic dopamine sulfonate (ZDS) ligand-coated superparamagnetic iron oxide nanoparticles (SPIONs) were investigated in various biomedical applications.
Abstract: We have recently developed compact and water-soluble zwitterionic dopamine sulfonate (ZDS) ligand coated superparamagnetic iron oxide nanoparticles (SPIONs) for use in various biomedical applications. The defining characteristics of ZDS-coated SPIONs are small hydrodynamic diameters, low non-specific interactions with fetal bovine serum, the opportunity for specific labeling, and stability with respect to time, pH, and salinity. We report here on the magnetic characterization of ZDS-coated SPIONs and their in vitro and in vivo performance relative to non-specific interactions with HeLa cells and in mice, respectively. ZDS-coated SPIONs retained the superparamagnetism and saturation magnetization (Ms) of as-synthesized hydrophobic SPIONs, with Ms = 74 emu g−1 [Fe]. Moreover, ZDS-coated SPIONs showed only small non-specific uptake into HeLa cancer cells in vitro and low non-specific binding to serum proteins in vivo in mice.

Journal ArticleDOI
TL;DR: This study exemplifies the strategy of disconnecting sensing and reporting functions to create a universal fluorescent sensor design that addresses many of the challenges associated with harnessing the unique optical properties of NCs.
Abstract: Fold-up fluorophore: A new paradigm for designing self-referencing fluorescent nanosensors is demonstrated by interfacing a pH-triggered molecular conformational switch with quantum dots. Analytedependent, large-amplitude conformational motion controls the distance between the nanocrystal energy donor and an organic FRET acceptor. The result is a fluorescence signal capable of reporting pH values from individual endosomes in living cells.

Journal ArticleDOI
TL;DR: In this article, the effect of hypofractionated radiation therapy on the ability of cathepsin-activated probes to differentiate between normal and cancerous tissue was evaluated in mice.
Abstract: Purpose Cathepsin-activated fluorescent probes can detect tumors in mice and in canine patients. We previously showed that these probes can detect microscopic residual sarcoma in the tumor bed of mice during gross total resection. Many patients with soft tissue sarcoma (STS) and other tumors undergo radiation therapy (RT) before surgery. This study assesses the effect of RT on the ability of cathepsin-activated probes to differentiate between normal and cancerous tissue. Methods and Materials A genetically engineered mouse model of STS was used to generate primary hind limb sarcomas that were treated with hypofractionated RT. Mice were injected intravenously with cathepsin-activated fluorescent probes, and various tissues, including the tumor, were imaged using a hand-held imaging device. Resected tumor and normal muscle samples were harvested to assess cathepsin expression by Western blot. Uptake of activated probe was analyzed by flow cytometry and confocal microscopy. Parallel in vitro studies using mouse sarcoma cells were performed. Results RT of primary STS in mice and mouse sarcoma cell lines caused no change in probe activation or cathepsin protease expression. Increasing radiation dose resulted in an upward trend in probe activation. Flow cytometry and immunofluorescence showed that a substantial proportion of probe-labeled cells were CD11b-positive tumor-associated immune cells. Conclusions In this primary murine model of STS, RT did not affect the ability of cathepsin-activated probes to differentiate between tumor and normal muscle. Cathepsin-activated probes labeled tumor cells and tumor-associated macrophages. Our results suggest that it would be feasible to include patients who have received preoperative RT in clinical studies evaluating cathepsin-activated imaging probes.

Journal ArticleDOI
TL;DR: Photoluminescence measurements of the fabricated QD clusters showed intermittent photol Luminescence, which indicates that the QDs were optically active after the fabrication process, a step towards the integration of individual QDs in optoelectronic and nano-optical systems.
Abstract: We demonstrated a technique to control the placement of 6 nm-diameter CdSe and 5 nm-diameter CdSe/CdZnS colloidal quantum dots (QDs) through electron-beam lithography. This QD-placement technique resulted in an average of three QDs in each cluster, and 87% of the templated sites were occupied by at least one QD. These QD clusters could be in close proximity to one another, with a minimum separation of 12 nm. Photoluminescence measurements of the fabricated QD clusters showed intermittent photoluminescence, which indicates that the QDs were optically active after the fabrication process. This optimized top-down lithographic process is a step towards the integration of individual QDs in optoelectronic and nano-optical systems.

01 May 2013
TL;DR: The results suggest that it would be feasible to include patients with soft tissue sarcoma who have received preoperative RT in clinical studies evaluating cathepsin-activated imaging probes.
Abstract: Purpose Cathepsin-activated fluorescent probes can detect tumors in mice and in canine patients. We previously showed that these probes can detect microscopic residual sarcoma in the tumor bed of mice during gross total resection. Many patients with soft tissue sarcoma (STS) and other tumors undergo radiation therapy (RT) before surgery. This study assesses the effect of RT on the ability of cathepsin-activated probes to differentiate between normal and cancerous tissue. Methods and Materials A genetically engineered mouse model of STS was used to generate primary hind limb sarcomas that were treated with hypofractionated RT. Mice were injected intravenously with cathepsin-activated fluorescent probes, and various tissues, including the tumor, were imaged using a hand-held imaging device. Resected tumor and normal muscle samples were harvested to assess cathepsin expression by Western blot. Uptake of activated probe was analyzed by flow cytometry and confocal microscopy. Parallel in vitro studies using mouse sarcoma cells were performed. Results RT of primary STS in mice and mouse sarcoma cell lines caused no change in probe activation or cathepsin protease expression. Increasing radiation dose resulted in an upward trend in probe activation. Flow cytometry and immunofluorescence showed that a substantial proportion of probe-labeled cells were CD11b-positive tumor-associated immune cells. Conclusions In this primary murine model of STS, RT did not affect the ability of cathepsin-activated probes to differentiate between tumor and normal muscle. Cathepsin-activated probes labeled tumor cells and tumor-associated macrophages. Our results suggest that it would be feasible to include patients who have received preoperative RT in clinical studies evaluating cathepsin-activated imaging probes.

Journal ArticleDOI
TL;DR: In this paper, a colloidal quantum dot (QD) sensitized short wavelength infrared (SWIR) camera is demonstrated for UV tagging applications and the extension of this technology to the mid infrared spectral region is discussed.
Abstract: The high infrared quantum yield, continuous absorption spectrum, and band edge tunability of colloidal quantum dots (QD) has opened up new opportunities to use luminescent down shifting for multispectral imaging in the infrared. We demonstrate a QD sensitized short wavelength infrared (SWIR) camera which is capable of UV-SWIR multispectral imaging. The application of multispectral cameras for UV tagging applications is demonstrated and the extension of this technology to the mid infrared spectral region is discussed.

Patent
25 Feb 2013
TL;DR: In this article, a personal skin lesion scanner system that can facilitate early detection of changes in the appearance of a user's skin is described, which includes a handheld device for home use, to record images of a users skin, and software for analyzing the images.
Abstract: A personal skin lesion scanner system that can facilitate early detection of changes in the appearance of a user's skin is described. The system includes a handheld device for home use, to record images of a user's skin, and software for analyzing the images. The system can automatically detect changes in the user' s skin, such as changes in the size, shape, or color of a skin lesion, and alert the user if any changes are detected.


Posted Content
TL;DR: This work proposes a novel strategy, quantum process tomography (QPT), for ultrafast spectroscopy and applies it to reconstruct the evolving quantum state of excitons in double-walled supramolecular light-harvesting nanotubes at room temperature from eight narrowband transient grating experiments, constituting the first experimental QPT in a "warm" and complex system.
Abstract: Long-lived exciton coherences have been recently observed in photosynthetic complexes via ultrafast spectroscopy, opening exciting possibilities for the study and design of coherent exciton transport. Yet, ambiguity in the spectroscopic signals has led to arguments for interpreting them in terms of the exciton dynamics, demanding more stringent tests. We propose a novel strategy, Quantum Process Tomography (QPT) for ultrafast spectroscopy, to reconstruct the evolving quantum state of excitons in double-walled supramolecular light-harvesting nanotubes at room temperature. The protocol calls for eight transient grating experiments with varied pulse spectra. Our analysis reveals unidirectional energy transfer from the outer to the inner wall excitons, absence of nonsecular processes, and an unexpected coherence between those two states lasting about 150 femtoseconds, indicating weak electronic coupling between the walls. Our work constitutes the first experimental QPT in a 'warm' and complex system, and provides an elegant scheme to maximize information from ultrafast spectroscopy experiments.

01 Jan 2013
TL;DR: In this article, a new set of zwitterionic quantum dots were synthesized and used to study the influence of microscopic charge arrangements on the in vivo behavior of nanoparticles.
Abstract: Detailed Charge arrangements: A new set of zwitterionic quantum dots were synthesized and used to study the influence of microscopic charge arrangements on the in vivo behavior of nanoparticles. Experiments using cultured cells and live mice demonstrate that the microscopic arrangement of surface charges strongly influence nonspecific binding, clearance behavior, and in vivo transport of nanoparticles.