scispace - formally typeset
Search or ask a question
Author

Moungi G. Bawendi

Bio: Moungi G. Bawendi is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Quantum dot & Nanocrystal. The author has an hindex of 165, co-authored 626 publications receiving 118108 citations. Previous affiliations of Moungi G. Bawendi include United States Department of the Navy & United States Naval Research Laboratory.


Papers
More filters
Patent
26 Jan 2012
TL;DR: In this article, a method for the design and fabrication of the device for enhancing the brightness of luminescent molecules, nanostructures, and thin films is presented, which includes a mirror, a dielectric medium or spacer, an absorptive layer, and a luminecent layer.
Abstract: Disclosed are a device and a method for the design and fabrication of the device for enhancing the brightness of luminescent molecules, nanostructures, and thin films. The device includes a mirror, a dielectric medium or spacer, an absorptive layer, and a luminescent layer. The absorptive layer is a continuous thin film of a strongly absorbing organic or inorganic material. The luminescent layer may be a continuous luminescent thin film or an arrangement of isolated luminescent species, e.g., organic or metal-organic dye molecules, semiconductor quantum dots, or other semiconductor nanostructures, supported on top of the absorptive layer.

5 citations

Proceedings ArticleDOI
06 May 2007
TL;DR: In this paper, the first all-inorganic QD-LEDs consisting of radiofrequency sputtered metaloxide charge transport layers and a colloidal quantum dot electroluminescent region were presented.
Abstract: We present the first all-inorganic QD-LEDs consisting of radio-frequency sputtered metal-oxide charge transport layers and a colloidal quantum dot electroluminescent region. These devices manifest a 100-fold increase in external quantum efficiency over previously reported structures.

5 citations

Journal ArticleDOI
TL;DR: In this paper , a stable, highly-confined 1D CsPbBr3 nanorods (NRs) were synthesized using amino-terminated copolymers.
Abstract: One-dimensional (1D) colloidal lead halide perovskites (LHPs) have potential as quantum emitters. Their study, however, has been hampered by their previous instability, leaving a gap in our understanding of structure-property relationships in colloidal LHPs with anisotropic shapes. Here, we synthesize stable, highly-confined 1D CsPbBr3 nanorods (NRs) and demonstrate their structural details and photoluminescence (PL) properties at both the ensemble and single particle levels. Using amino-terminated copolymers, we are able to stabilize and characterize 1D CsPbBr3 NRs utilizing transmission electron microscopy (TEM) and small angle scattering (SAS). Scanning transmission electron microscopy reveals that these NRs possess structural defects, including twists and inhomogeneity. Solution-phase photon correlation spectroscopy shows low biexciton-to-exciton quantum yield ratios (QYBX/QYX) and broad spectral line widths dominated by homogeneous broadening.

5 citations

Patent
17 Sep 1999
TL;DR: A fluorescent semiconductor nanocrystal is used as a tag or label for a biological molecule which is preferably a member of a specific binding pair such as avidin, biotin, antibody, antigen or an oligonucleotide as mentioned in this paper.
Abstract: A fluorescent semiconductor nanocrystal is used as a tag or label for a biological molecule which is preferably a member of a specific binding pair such as avidin, biotin, antibody, antigen or an oligonucleotide. The nanocrystals may have a core of CdSe, a shell layer of ZnS, a "cap" of trioctylphosphine oxide and a coating of mercaptoundecanoic acid. The latter may be deprotonated to render the nanocrystals water soluble. Biotin-thiol-(as shown) and biotin-amine-nanocrystal complexes are prepared. Nanocrystal-tagged binding members may be used in assays to detect target analytes and particularly in multiplex assays where a plurality of analytes are simultaneously detected by the use of differently tagged binding members, the different nanocrystal labels having emission spectra that are distinct from each other.

5 citations

Patent
03 Dec 2010
TL;DR: In this article, the color of light detected by a photodetector can be chosen by selecting a J-aggregate with a corresponding peak absorption wavelength, which can facilitate charge transport.
Abstract: A photoelectric device, such as a photodetector, can include a semiconductor nanowire electrostatically associated with a J-aggregate. The J-aggregate can facilitate absorption of a desired wavelength of light, and the semiconductor nanowire can facilitate charge transport. The color of light detected by the device can be chosen by selecting a J-aggregate with a corresponding peak absorption wavelength.

5 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,737 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
21 Feb 1997-Science
TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Abstract: Optical detection and spectroscopy of single molecules and single nanoparticles have been achieved at room temperature with the use of surface-enhanced Raman scattering. Individual silver colloidal nanoparticles were screened from a large heterogeneous population for special size-dependent properties and were then used to amplify the spectroscopic signatures of adsorbed molecules. For single rhodamine 6G molecules adsorbed on the selected nanoparticles, the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15 , much larger than the ensemble-averaged values derived from conventional measurements. This enormous enhancement leads to vibrational Raman signals that are more intense and more stable than single-molecule fluorescence.

9,609 citations