scispace - formally typeset
Search or ask a question
Author

Moungi G. Bawendi

Bio: Moungi G. Bawendi is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Quantum dot & Nanocrystal. The author has an hindex of 165, co-authored 626 publications receiving 118108 citations. Previous affiliations of Moungi G. Bawendi include United States Department of the Navy & United States Naval Research Laboratory.


Papers
More filters
Posted Content
TL;DR: In this paper, the role of alkali-metal cations in perovskite solar cells was investigated using synchrotron-based nano-X-ray fluorescence and complementary measurements, showing that when adding RbI and/or CsI the halide distribution becomes homogenous.
Abstract: Author(s): Correa-Baena, Juan-Pablo; Luo, Yanqi; Brenner, Thomas M; Snaider, Jordan; Sun, Shijing; Li, Xueying; Jensen, Mallory A; Nienhaus, Lea; Wieghold, Sarah; Poindexter, Jeremy R; Wang, Shen; Meng, Ying Shirley; Wang, Ti; Lai, Barry; Bawendi, Moungi G; Huang, Libai; Fenning, David P; Buonassisi, Tonio | Abstract: Perovskite solar cells have shown remarkable efficiencies beyond 22%, through organic and inorganic cation alloying. However, the role of alkali-metal cations is not well-understood. By using synchrotron-based nano-X-ray fluorescence and complementary measurements, we show that when adding RbI and/or CsI the halide distribution becomes homogenous. This homogenization translates into long-lived charge carrier decays, spatially homogenous carrier dynamics visualized by ultrafast microscopy, as well as improved photovoltaic device performance. We find that Rb and K phase-segregate in highly concentrated aggregates. Synchrotron-based X-ray-beam-induced current and electron-beam-induced current of solar cells show that Rb clusters do not contribute to the current and are recombination active. Our findings bring light to the beneficial effects of alkali metal halides in perovskites, and point at areas of weakness in the elemental composition of these complex perovskites, paving the way to improved performance in this rapidly growing family of materials for solar cell applications.

2 citations

Journal ArticleDOI
TL;DR: In this article, the identity of each particle and the high monodispersity of the sample are maintained in the films as revealed by small-angle x-ray scattering, transmission electron microscopy, and optical spectroscopy.
Abstract: We describe a method to synthesize optical quality thin and thick films of close packed CdSe nanocrystallites (quantum dots). The average dot size is tunable from ≈12-150 A in diameter with ≈3.5% rms size distribution. The identity of each particle and the high monodispersity of the sample are maintained in the films as revealed by small-angle x-ray scattering, transmission electron microscopy, and optical spectroscopy. We use small-angle x-ray diffraction patterns to obtain form factors for the individual dots and to generate radial distribution functions for the densely packed films. We observe the random close packing of dots in the solid state using transmission electron microscopy. Comparing optical spectra of particles close packed in a film with those of nanocrystallites dispersed in alkanes reveals similar optical resonances in absorption while the emission lineshape is modified and its position is red shifted. Differences in film emission are consistent with electronic energy transfer between close packed dots within the inhomogeneous distribution of the sample.

2 citations

Journal ArticleDOI
TL;DR: In this article , an uncertainty-aware, deep adversarial autoencoder ensemble (AAE) is proposed to reconstruct noise-free second-order photon correlation functions from noise-dominated, few-shot inputs.
Abstract: Second-order photon correlation measurements [${g}^{(2)}(\ensuremath{\tau})$ functions] are widely used to classify single-photon emission purity in quantum emitters or to measure the multiexciton quantum yield of emitters that can simultaneously host multiple excitations -- such as quantum dots -- by evaluating the value of ${g}^{(2)}(\ensuremath{\tau}=0)$. Accumulating enough photons to accurately calculate this value is time consuming and could be accelerated by fitting of few-shot photon correlations. Here, we develop an uncertainty-aware, deep adversarial autoencoder ensemble (AAE) that reconstructs noise-free ${g}^{(2)}(\ensuremath{\tau})$ functions from noise-dominated, few-shot inputs. The model is trained with simulated ${g}^{(2)}(\ensuremath{\tau})$ functions that are facilely generated by Poisson sampling time bins. The AAE reconstructions are performed orders-of-magnitude faster, with reconstruction errors and estimates of ${g}^{(2)}(\ensuremath{\tau}=0)$ that are lower in variance and similar in accuracy compared to Maximum likelihood estimation and Levenberg-Marquardt least-squares fitting approaches, for simulated and experimentally measured few-shot ${g}^{(2)}(\ensuremath{\tau})$ functions (\ensuremath{\sim}100 two-photon events) of InP/ZnS/ZnSe and CdS/CdSe/CdS quantum dots. The deep-ensemble model comprises eight individual autoencoders, allowing for probabilistic reconstructions of noise-free ${g}^{(2)}(\ensuremath{\tau})$ functions, and we show that the predicted variance scales inversely with number of shots, with comparable uncertainties to computationally intensive Markov chain Monte Carlo sampling. This work demonstrates the advantage of machine learning models to perform uncertainty-aware, fast, and accurate reconstructions of simple Poisson-distributed photon correlation functions, allowing for on-the-fly reconstructions and accelerated materials characterization of solid-state quantum emitters.

2 citations

Journal ArticleDOI
TL;DR: Intra-operative detection of microscopic residual disease in the tumor bed could be used to decrease the likelihood of local recurrence in patients with cancer.
Abstract: TPS11135 Background: Local recurrence is a common mode of failure for patients with cancer. Intra-operative detection of microscopic residual disease in the tumor bed could be used to decrease the ...

2 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,737 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
21 Feb 1997-Science
TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Abstract: Optical detection and spectroscopy of single molecules and single nanoparticles have been achieved at room temperature with the use of surface-enhanced Raman scattering. Individual silver colloidal nanoparticles were screened from a large heterogeneous population for special size-dependent properties and were then used to amplify the spectroscopic signatures of adsorbed molecules. For single rhodamine 6G molecules adsorbed on the selected nanoparticles, the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15 , much larger than the ensemble-averaged values derived from conventional measurements. This enormous enhancement leads to vibrational Raman signals that are more intense and more stable than single-molecule fluorescence.

9,609 citations