scispace - formally typeset
Search or ask a question
Author

Moungi G. Bawendi

Bio: Moungi G. Bawendi is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Quantum dot & Nanocrystal. The author has an hindex of 165, co-authored 626 publications receiving 118108 citations. Previous affiliations of Moungi G. Bawendi include United States Department of the Navy & United States Naval Research Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: Good agreement is found between experiment and theory if the transition dipole of CdSe QDs is assumed to be twofold degenerate, which implies that the three-dimensional orientation of the unique crystal axis in QDs can be determined at room temperature with polarization microscopy.
Abstract: Simple far-field emission polarization microscopy reveals that the emission transition dipole of CdSe colloidal quantum dots (QDs) is twofold degenerate at room temperature. We measure, model, and compare polarization anisotropy statistics of CdSe QDs and DiI (a one-dimensional emitter). We find excellent agreement between experiment and theory if the transition dipole of CdSe QDs is assumed to be twofold degenerate. This implies that the three-dimensional orientation of the unique crystal axis in QDs can be determined at room temperature with polarization microscopy. We describe an optical setup to measure four polarization angles of multiple single QDs simultaneously and in real time (≈16 Hz). We use this setup in a proof-of-concept experiment to demonstrate that the rotational motion of QDs can be monitored in various host matrices.

137 citations

Journal ArticleDOI
TL;DR: The study builds on previous InP nanocrystal synthetic and mechanistic work to probe the significant experimental parameters involved in InPnanocrystal syntheses and finds that the growth of Inp nanocrystals is dominated by the aging regime, which is consistent with a model of InP Nanocrystal growth where nanocystal growth is dominatedBy nonmolecular processes such as coalescence from nonmolescular InP species and interparticle ripening processes.
Abstract: Indium phosphide (InP) nanocrystals are of significant interest for use in optoelectronic devices, specifically as a replacement for CdSe nanocrystals in commercial applications. However, the current mechanistic understanding and synthetic procedures for InP nanocrystals has not yet reached the same level as for CdSe nanocrystal synthesis. Using a truly continuous three-stage microfluidic reactor to precisely tune reaction conditions in the mixing, aging, and sequential growth regimes, our study described here builds on previous InP nanocrystal synthetic and mechanistic work to probe the significant experimental parameters involved in InP nanocrystal syntheses. We find that the growth of InP nanocrystals is dominated by the aging regime, which is consistent with a model of InP nanocrystal growth where nanocrystal growth is dominated by nonmolecular processes such as coalescence from nonmolecular InP species and interparticle ripening processes. The InP growth model is in contrast to the molecular-based growth of nanocrystals as observed in CdSe and PbSe nanocrystals. We observe that the size of InP nanocrystals is predominantly dependent on the concentration of free fatty acid in solution and the aging temperature. Other experimental parameters such as injection temperature and particle concentration do not appear to significantly affect InP nanocrystal size or size distributions. In addition, we probe the ability to grow larger InP nanocrystals through the sequential injection of precursors in the third stage of the microfluidic reactor. The use of high temperatures and high pressures in a continuous microfluidic system allows for a wide selection of solvents, precursors, and ligand systems, providing a vastly increased parameter space to explore synthetic conditions. The utilization of low-molecular-weight solvents at high pressures offers supercritical conditions tunable from liquid to gaslike, providing high diffusion rates, improved mixing, and the ability to solubilize various compounds inaccessible by solvents employed in traditional nanocrystal syntheses. The use of a supercritical solvent in a microfluidic reactor results in narrower residence time distributions, producing homogeneous reaction conditions ideal for nanocrystal synthesis. Microfluidic systems allow precise control over reaction conditions and reproducibility as a result of rigorous control of heat and mass transfer. In addition, the microfluidic system can be utilized for fast screening of reaction parameters with in situ reaction monitoring. Figure 1 illustrates our truly continuous three-stage silicon-based microfluidic system consisting of mixing, aging, and sequential injection stages operating at a pressure of 65 bar,

137 citations

Journal ArticleDOI
TL;DR: It is found that the single-nanocrystal linewidth at room temperature is heavily influenced by the nature of the CdSe surface and the epitaxial shell, which have a profound impact on the internal electric fields that affect exciton-phonon coupling.
Abstract: The optimization of photoluminescence spectral linewidths in semiconductor nanocrystal preparations involves minimizing both the homogeneous and inhomogeneous contributions to the ensemble spectrum. Although the inhomogeneous contribution can be controlled by eliminating interparticle inhomogeneities, far less is known about how to synthetically control the homogeneous, or single-nanocrystal, spectral linewidth. Here, we use solution photon-correlation Fourier spectroscopy (S-PCFS) to measure how the sample-averaged single-nanocrystal emission linewidth of CdSe core and core/shell nanocrystals change with systematic changes in the size of the cores and the thickness and composition of the shells. We find that the single-nanocrystal linewidth at room temperature is heavily influenced by the nature of the CdSe surface and the epitaxial shell, which have a profound impact on the internal electric fields that affect exciton–phonon coupling. Our results explain the wide variations, both experimental and theore...

135 citations

Journal ArticleDOI
TL;DR: Invisible near-infrared light overcomes the limitations of currently available methods, permits patient-specific imaging of lymphatic flow and sentinel nodes, and provides highly sensitive, real-time image-guided dissection.
Abstract: Because many gastrointestinal (GI) tumors spread by way of lymphatics, histological assessment of the first draining lymph nodes has both prognostic and therapeutic significance. However, sentinel lymph node mapping of the GI tract by using available techniques is limited by unpredictable drainage patterns, high background signal, and the inability to image lymphatic tracers relative to surgical anatomy in real time. Our goal was to develop a method for patient-specific intraoperative sentinel lymph node mapping of the GI tract by using invisible near-infrared light. We developed an intraoperative near-infrared fluorescence imaging system that simultaneously displays surgical anatomy and otherwise invisible near-infrared fluorescence images of the surgical field. Near-infrared fluorescent quantum dots were injected intraparenchymally into the stomach, small bowel, and colon, and draining lymphatic channels and sentinel lymph nodes were visualized. Dissection was performed under real-time image guidance. In 10 adult pigs, we demonstrated that 200 pmol of quantum dots quickly and accurately map lymphatic drainage and sentinel lymph nodes. Injection into the mid jejunum and colon results in fluorescence of a single lymph node at the root of the bowel mesentery. Injection into the stomach resulted in identification of a retrogastric node. Histological analysis in all cases confirmed the presence of nodal tissue. We report the use of invisible near-infrared light for intraoperative sentinel lymph node mapping of the GI tract. This technology overcomes the limitations of currently available methods, permits patient-specific imaging of lymphatic flow and sentinel nodes, and provides highly sensitive, real-time image-guided dissection.

135 citations

01 Jul 2013
TL;DR: This work introduces reconstruction methods that allow us to visualize the propagation of femtosecond light pulses through macroscopic scenes, and introduces the notion of time-unwarping between the camera's and the world's space-time coordinate systems to take into account effects associated with the finite speed of light.
Abstract: We present femto-photography, a novel imaging technique to capture and visualize the propagation of light. With an effective exposure time of 1.85 picoseconds (ps) per frame, we reconstruct movies of ultrafast events at an equivalent resolution of about one half trillion frames per second. Because cameras with this shutter speed do not exist, we re-purpose modern imaging hardware to record an ensemble average of repeatable events that are synchronized to a streak sensor, in which the time of arrival of light from the scene is coded in one of the sensor's spatial dimensions. We introduce reconstruction methods that allow us to visualize the propagation of femtosecond light pulses through macroscopic scenes; at such fast resolution, we must consider the notion of time-unwarping between the camera's and the world's space-time coordinate systems to take into account effects associated with the finite speed of light. We apply our femto-photography technique to visualizations of very different scenes, which allow us to observe the rich dynamics of time-resolved light transport effects, including scattering, specular reflections, diffuse interreflections, diffraction, caustics, and subsurface scattering. Our work has potential applications in artistic, educational, and scientific visualizations; industrial imaging to analyze material properties; and medical imaging to reconstruct subsurface elements. In addition, our time-resolved technique may motivate new forms of computational photography.

135 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,737 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
21 Feb 1997-Science
TL;DR: In this article, surface-enhanced Raman scattering was used to detect single molecules and single nanoparticles at room temperature with the use of surface enhanced Raman, and the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15, much larger than the ensemble-averaged values derived from conventional measurements.
Abstract: Optical detection and spectroscopy of single molecules and single nanoparticles have been achieved at room temperature with the use of surface-enhanced Raman scattering. Individual silver colloidal nanoparticles were screened from a large heterogeneous population for special size-dependent properties and were then used to amplify the spectroscopic signatures of adsorbed molecules. For single rhodamine 6G molecules adsorbed on the selected nanoparticles, the intrinsic Raman enhancement factors were on the order of 10 14 to 10 15 , much larger than the ensemble-averaged values derived from conventional measurements. This enormous enhancement leads to vibrational Raman signals that are more intense and more stable than single-molecule fluorescence.

9,609 citations