scispace - formally typeset
Search or ask a question
Author

Mourad Harir

Other affiliations: Helmholtz Zentrum München
Bio: Mourad Harir is an academic researcher from Technische Universität München. The author has contributed to research in topics: Dissolved organic carbon & Organic matter. The author has an hindex of 16, co-authored 37 publications receiving 730 citations. Previous affiliations of Mourad Harir include Helmholtz Zentrum München.

Papers
More filters
Journal ArticleDOI
TL;DR: Complementary molecular and atomic signatures obtained from Fourier transform ion cyclotron resonance (FTICR) mass spectra and NMR spectra provided unequivocal attribution of CHO, CHNO, CHOS, and CHNOS molecular series in secondary organic aerosols and high-resolution definition of carbon chemical environments.
Abstract: Complementary molecular and atomic signatures obtained from Fourier transform ion cyclotron resonance (FTICR) mass spectra and NMR spectra provided unequivocal attribution of CHO, CHNO, CHOS, and CHNOS molecular series in secondary organic aerosols (SOA) and high-resolution definition of carbon chemical environments. Sulfate esters were confirmed as major players in SOA formation and as major constituents of its water-soluble fraction (WSOC). Elevated concentrations of SO2, sulfate, and photochemical activity were shown to increase the proportion of SOA sulfur-containing compounds. Sulfonation of CHO precursors by means of heterogeneous reactions between carbonyl derivatives and sulfuric acid in gas-phase photoreactions was proposed as a likely formation mechanism of CHOS molecules. In addition, photochemistry induced oligomerization processes of CHOS molecules. Methylesters found in methanolic extracts of a SOA subjected to strong photochemical exposure were considered secondary products derived from sul...

157 citations

Journal ArticleDOI
TL;DR: Improved guidelines for dissolved organic matter (DOM) isolation by solid phase extraction (SPE) with a styrene-divinylbenzene copolymer (PPL) sorbent are proposed, which has become an established method for the isolation of DOM from natural waters because of its ease of application and appreciable carbon recovery.
Abstract: This paper proposes improved guidelines for dissolved organic matter (DOM) isolation by solid phase extraction (SPE) with a styrene–divinylbenzene copolymer (PPL) sorbent, which has become an established method for the isolation of DOM from natural waters, because of its ease of application and appreciable carbon recovery. Suwannee River water was selected to systematically study the effects of critical SPE variables such as loading mass, concentration, flow rate, and up-scaling on the extraction selectivity of the PPL sorbent. High-field Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy were performed to interpret the DOM chemical space of eluates, as well as permeates and wash liquids with molecular resolution. Up to 89% dissolved organic carbon (DOC) recovery was obtained with a DOC/PPL mass ratio of 1:800 at a DOC concentration of 20 mg/L. With the application of larger loading volumes, low proportions of highly oxygenate...

103 citations

Journal ArticleDOI
TL;DR: FTMS-based principal component analysis (PCA) provided essentially analogous alignment of SR DOM and NS DOM molecular compositions according to the five established groups of SPE classification, and corroborated the sorption-mechanism-based selectivity of DOM extraction in both cases.

93 citations

Journal ArticleDOI
TL;DR: In this paper, an unusual class of bacterial sulfonolipids (SLs) was detected in mouse cecum, which was originally found in environmental microbes, and they performed a detailed molecular level characterization of this class of lipids by combining high-resolution mass spectrometry and liquid chromatography analysis.
Abstract: The gut microbiota generates a huge pool of unknown metabolites, and their identification and characterization is a key challenge in metabolomics. However, there are still gaps on the studies of gut microbiota and their chemical structures. In this investigation, an unusual class of bacterial sulfonolipids (SLs) is detected in mouse cecum, which was originally found in environmental microbes. We have performed a detailed molecular level characterization of this class of lipids by combining high-resolution mass spectrometry and liquid chromatography analysis. Eighteen SLs that differ in their capnoid and fatty acid chain compositions were identified. The SL called “sulfobacin B” was isolated, characterized, and was significantly increased in mice fed with high-fat diets. To reveal bacterial producers of SLs, metagenome analysis was acquired and only two bacterial genera, i.e., Alistipes and Odoribacter, were revealed to be responsible for their production. This knowledge enables explaining a part of the molecular complexity introduced by microbes to the mammalian gastrointestinal tract and can be used as chemotaxonomic evidence in gut microbiota.

74 citations

Journal ArticleDOI
TL;DR: The more pronounced change in molecular DOM composition during the incubation indicates that diagenetic modification of organic matter can be substantial compared to complete mineralization.

66 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a review summarizes the current knowledge on aqueous phase organic reactions and combines evidence that points to a significant role of aqSOA formation in the atmosphere.
Abstract: . Progress has been made over the past decade in predicting secondary organic aerosol (SOA) mass in the atmosphere using vapor pressure-driven partitioning, which implies that SOA compounds are formed in the gas phase and then partition to an organic phase (gasSOA). However, discrepancies in predicting organic aerosol oxidation state, size and product (molecular mass) distribution, relative humidity (RH) dependence, color, and vertical profile suggest that additional SOA sources and aging processes may be important. The formation of SOA in cloud and aerosol water (aqSOA) is not considered in these models even though water is an abundant medium for atmospheric chemistry and such chemistry can form dicarboxylic acids and "humic-like substances" (oligomers, high-molecular-weight compounds), i.e. compounds that do not have any gas phase sources but comprise a significant fraction of the total SOA mass. There is direct evidence from field observations and laboratory studies that organic aerosol is formed in cloud and aerosol water, contributing substantial mass to the droplet mode. This review summarizes the current knowledge on aqueous phase organic reactions and combines evidence that points to a significant role of aqSOA formation in the atmosphere. Model studies are discussed that explore the importance of aqSOA formation and suggestions for model improvements are made based on the comprehensive set of laboratory data presented here. A first comparison is made between aqSOA and gasSOA yields and mass predictions for selected conditions. These simulations suggest that aqSOA might contribute almost as much mass as gasSOA to the SOA budget, with highest contributions from biogenic emissions of volatile organic compounds (VOC) in the presence of anthropogenic pollutants (i.e. NOx) at high relative humidity and cloudiness. Gaps in the current understanding of aqSOA processes are discussed and further studies (laboratory, field, model) are outlined to complement current data sets.

1,032 citations

Journal ArticleDOI
TL;DR: A narrative review illustrates emerging immunological and mechanistic implications by which Alistipes spp.
Abstract: Alistipes is a relatively new genus of bacteria isolated primarily from medical clinical samples, although at a low rate compared to other genus members of the Bacteroidetes phylum, which are highly relevant in dysbiosis and disease. According to the taxonomy database at The National Center for Biotechnology Information, the genus consists of 13 species: Alistipes finegoldii, Alistipes putredinis, Alistipes onderdonkii, Alistipes shahii, Alistipes indistinctus, Alistipes senegalensis, Alistipes timonensis, Alistipes obesi, Alistipes ihumii, Alistipes inops, Alistipes megaguti, Alistipes provencensis, and Alistipes massiliensis. Alistipes communis and A. dispar, and the subspecies A. Onderdonkii subspecies vulgaris (vs. onderdonkii subsp.) are the newest strains featured outside that list. Although typically isolated from the human gut microbiome various species of this genus have been isolated from patients suffering from appendicitis, and abdominal and rectal abscess. It is possible that as Alistipes spp. emerge, their identification in clinical samples may be underrepresented as novel MS-TOF methods may not be fully capable to discriminate distinct species as separate since it will require the upgrading of MS-TOF identification databases. In terms of pathogenicity, there is contrasting evidence indicating that Alistipes may have protective effects against some diseases, including liver fibrosis, colitis, cancer immunotherapy, and cardiovascular disease. In contrast, other studies indicate Alistipes is pathogenic in colorectal cancer and is associated with mental signs of depression. Gut dysbiosis seems to play a role in determining the compositional abundance of Alistipes in the feces (e.g., in non-alcoholic steatohepatitis, hepatic encephalopathy, and liver fibrosis). Since Alistipes is a relatively recent sub-branch genus of the Bacteroidetes phylum, and since Bacteroidetes are commonly associated with chronic intestinal inflammation, this narrative review illustrates emerging immunological and mechanistic implications by which Alistipes spp. correlate with human health.

563 citations

Journal ArticleDOI
TL;DR: Atmosphere: State of the Art and Challenges Barbara Nozier̀e,*,† Markus Kalberer,*,‡ Magda Claeys,* James Allan, Barbara D’Anna,† Stefano Decesari, Emanuela Finessi, Marianne Glasius, Irena Grgic,́ Jacqueline F.
Abstract: Atmosphere: State of the Art and Challenges Barbara Nozier̀e,*,† Markus Kalberer,*,‡ Magda Claeys,* James Allan, Barbara D’Anna,† Stefano Decesari, Emanuela Finessi, Marianne Glasius, Irena Grgic,́ Jacqueline F. Hamilton, Thorsten Hoffmann, Yoshiteru Iinuma, Mohammed Jaoui, Ariane Kahnt, Christopher J. Kampf, Ivan Kourtchev,‡ Willy Maenhaut, Nicholas Marsden, Sanna Saarikoski, Jürgen Schnelle-Kreis, Jason D. Surratt, Sönke Szidat, Rafal Szmigielski, and Armin Wisthaler †Ircelyon/CNRS and Universite ́ Lyon 1, 69626 Villeurbanne Cedex, France ‡University of Cambridge, Cambridge CB2 1EW, United Kingdom University of Antwerp, 2000 Antwerp, Belgium The University of Manchester & National Centre for Atmospheric Science, Manchester M13 9PL, United Kingdom Istituto ISAC C.N.R., I-40129 Bologna, Italy University of York, York YO10 5DD, United Kingdom University of Aarhus, 8000 Aarhus C, Denmark National Institute of Chemistry, 1000 Ljubljana, Slovenia Johannes Gutenberg-Universitaẗ, 55122 Mainz, Germany Leibniz-Institut für Troposphar̈enforschung, 04318 Leipzig, Germany Alion Science & Technology, McLean, Virginia 22102, United States Max Planck Institute for Chemistry, 55128 Mainz, Germany Ghent University, 9000 Gent, Belgium Finnish Meteorological Institute, FI-00101 Helsinki, Finland Helmholtz Zentrum München, D-85764 Neuherberg, Germany University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States University of Bern, 3012 Bern, Switzerland Institute of Physical Chemistry PAS, Warsaw 01-224, Poland University of Oslo, 0316 Oslo, Norway

390 citations

Journal ArticleDOI
TL;DR: It is hard to overstate the importance of oxygenated organic compounds in atmospheric chemistry, which play an active role in the sequence of chemical reactions responsible for tropospheric ozone formation in both polluted and remote environments.
Abstract: It is hard to overstate the importance of oxygenated organic compounds in atmospheric chemistry. Oxygenated organic compounds are emitted into the atmosphere from natural and man-made sources, and they are formed in the atmosphere as oxidation products of all hydrocarbons present in the atmosphere. Oxygenated volatile organic compounds (OVOCs) are generally more reactive than the alkanes from which they are derived. OVOCs play an active role in the sequence of chemical reactions responsible for tropospheric ozone formation in both polluted and remote environments.

346 citations