scispace - formally typeset
Search or ask a question
Author

Mübeccel Akdis

Other affiliations: University of Zurich
Bio: Mübeccel Akdis is an academic researcher from Swiss Institute of Allergy and Asthma Research. The author has contributed to research in topics: Immune system & Immunoglobulin E. The author has an hindex of 82, co-authored 289 publications receiving 24661 citations. Previous affiliations of Mübeccel Akdis include University of Zurich.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the anergic state results from increased IL-10 production by SIT, which causes specific anergy in peripheral T cells, and regulates specific IgE and IgG4 production toward normal IgE-related immunity.
Abstract: The induction of allergen-specific anergy in peripheral T cells represents a key step in specific immunotherapy (SIT). Here we demonstrate that the anergic state results from increased IL-10 production. In bee venom (BV)-SIT the specific proliferative and cytokine responses against the main allergen, the phospholipase A2 (PLA), and T cell epitope-containing PLA peptides were significantly suppressed after 7 d of treatment. Simultaneously, the production of IL-10 increased during BV-SIT. After 28 d of BV-SIT the anergic state was established. Intracytoplasmic cytokine staining of PBMC combined with surface marker detection revealed that IL-10 was produced initially by activated CD4(+)CD25(+), allergen-specific T cells, and followed by B cells and monocytes. Neutralization of IL-10 in PBMC fully reconstituted the specific proliferative and cytokine responses. A similar state of IL-10-associated T cell anergy, as induced in BV-SIT, was found in hyperimmune individuals who recently had received multiple bee stings. The addition of IL-10 to soluble CD40 ligand IL-4-stimulated PBMC or purified B cells inhibited the PLA-specific and total IgE and enhanced the IgG4 formation. Accordingly, increased IL-10 production by SIT causes specific anergy in peripheral T cells, and regulates specific IgE and IgG4 production toward normal IgG4-related immunity.

979 citations

Journal ArticleDOI
TL;DR: A deviation towards a regulatory/suppressor T cell response during SIT and in normal immunity as a key event for the healthy immune response to mucosal antigens is demonstrated.
Abstract: The regulation of normal and allergic immune responses to airborne allergens in the mucosa is still poorly understood, and the mechanism of specific immunotherapy (SIT) in normalizing the allergic response to such allergens is currently not clear. Accordingly, we have investigated the immunoregulatory mechanism of both normal and allergic responses to the major house-dust mite (HDM) and birch pollen allergens — Dermatophagoides pteroynyssinus (Der p)1 and Bet v 1, respectively — as well as the immunologic basis of SIT to HDM in rhinitis and asthma patients. In normal immunity to HDM and birch pollen, an allergen-specific peripheral T cell suppression to Der p 1 and Bet v 1 was observed. The deviated immune response was characterized by suppressed proliferative T celland Th1 (IFN-γ) and Th2 (IL-5, IL-13) cytokine responses, and increased IL-10 and TGF-β secretion by allergen-specific T cells. Neutralization of cytokine activity showed that T cell suppression was induced by IL-10 and TGF-β during SIT and in normal immunity to the mucosal allergens. In addition, SIT induced an antigen-specific suppressive activity in CD4+ CD25+ T cells of allergic individuals. Together, these results demonstrate a deviation towards a regulatory/suppressor T cell response during SIT and in normal immunity as a key event for the healthy immune response to mucosal antigens.

900 citations

Journal ArticleDOI
01 Jul 2020-Allergy
TL;DR: Understanding of the immune response and immunopathological changes in patients linked to deteriorating clinical conditions such as cytokine storm, acute respiratory distress syndrome, autopsy findings and changes in acute‐phase reactants, and serum biochemistry in COVID‐19 is improved.
Abstract: As a zoonotic disease that has already spread globally to several million human beings and possibly to domestic and wild animals, eradication of coronavirus disease 2019 (COVID-19) appears practically impossible. There is a pressing need to improve our understanding of the immunology of this disease to contain the pandemic by developing vaccines and medicines for the prevention and treatment of patients. In this review, we aim to improve our understanding on the immune response and immunopathological changes in patients linked to deteriorating clinical conditions such as cytokine storm, acute respiratory distress syndrome, autopsy findings and changes in acute-phase reactants, and serum biochemistry in COVID-19. Similar to many other viral infections, asymptomatic disease is present in a significant but currently unknown fraction of the affected individuals. In the majority of the patients, a 1-week, self-limiting viral respiratory disease typically occurs, which ends with the development of neutralizing antiviral T cell and antibody immunity. The IgM-, IgA-, and IgG-type virus-specific antibodies levels are important measurements to predict population immunity against this disease and whether cross-reactivity with other coronaviruses is taking place. High viral load during the first infection and repeated exposure to virus especially in healthcare workers can be an important factor for severity of disease. It should be noted that many aspects of severe patients are unique to COVID-19 and are rarely observed in other respiratory viral infections, such as severe lymphopenia and eosinopenia, extensive pneumonia and lung tissue damage, a cytokine storm leading to acute respiratory distress syndrome, and multiorgan failure. Lymphopenia causes a defect in antiviral and immune regulatory immunity. At the same time, a cytokine storm starts with extensive activation of cytokine-secreting cells with innate and adaptive immune mechanisms both of which contribute to a poor prognosis. Elevated levels of acute-phase reactants and lymphopenia are early predictors of high disease severity. Prevention of development to severe disease, cytokine storm, acute respiratory distress syndrome, and novel approaches to prevent their development will be main routes for future research areas. As we learn to live amidst the virus, understanding the immunology of the disease can assist in containing the pandemic and in developing vaccines and medicines to prevent and treat individual patients.

783 citations

Journal ArticleDOI
TL;DR: The mechanisms of action of allergen-specific immunotherapy include the very early desensitization effects, modulation of T-and B-cell responses and related antibody isotypes, and migration of eosinophil, basophils, and mast cells to tissues, as well as release of their mediators.
Abstract: Allergen-specific immunotherapy (SIT) has been used for almost a century as a desensitizing therapy for allergic diseases and represents the only curative and specific method of treatment. Administration of appropriate concentrations of allergen extracts has been shown to be reproducibly effective when patients are carefully selected. The mechanisms by which allergen-SIT has its effects include the modulation of T-cell and B-cell responses and related antibody isotypes as well as effector cells of allergic inflammation, such as eosinophils, basophils, and mast cells. The balance between allergen-specific T-regulatory (Treg) and T H 2 cells appears to be decisive in the development of allergic and healthy immune responses against allergens. Treg cells consistently represent the dominant subset specific for common environmental allergens in sensitized healthy individuals. In contrast, there is a high frequency of allergen-specific T H 2 cells in patients with allergy. The induction of a tolerant state in peripheral T cells represents an essential step in allergen-SIT. Peripheral T-cell tolerance is characterized mainly by generation of allergen-specific Treg cells leading to suppressed T-cell proliferation and T H 1 and T H 2 cytokine responses against the allergen. This is accompanied by a significant increase in allergen-specific IgG 4 , and also IgG 1 and IgA, and a decrease in IgE in the late stage of the disease. In addition, decreased tissue infiltration of mast cells and eosinophils and their mediator release including circulating basophils takes place. Current understanding of mechanisms of allergen-SIT, particularly the role of Treg cells in peripheral tolerance, may enable novel treatment strategies.

732 citations

Journal ArticleDOI
01 Feb 2021-Allergy
TL;DR: In this review, the scientific evidence on the risk factors of severity of COVID‐19 are highlighted and socioeconomic status, diet, lifestyle, geographical differences, ethnicity, exposed viral load, day of initiation of treatment, and quality of health care have been reported to influence individual outcomes.
Abstract: The pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused an unprecedented global social and economic impact, and high numbers of deaths. Many risk factors have been identified in the progression of COVID-19 into a severe and critical stage, including old age, male gender, underlying comorbidities such as hypertension, diabetes, obesity, chronic lung diseases, heart, liver and kidney diseases, tumors, clinically apparent immunodeficiencies, local immunodeficiencies, such as early type I interferon secretion capacity, and pregnancy. Possible complications include acute kidney injury, coagulation disorders, thoromboembolism. The development of lymphopenia and eosinopenia are laboratory indicators of COVID-19. Laboratory parameters to monitor disease progression include lactate dehydrogenase, procalcitonin, high-sensitivity C-reactive protein, proinflammatory cytokines such as interleukin (IL)-6, IL-1β, Krebs von den Lungen-6 (KL-6), and ferritin. The development of a cytokine storm and extensive chest computed tomography imaging patterns are indicators of a severe disease. In addition, socioeconomic status, diet, lifestyle, geographical differences, ethnicity, exposed viral load, day of initiation of treatment, and quality of health care have been reported to influence individual outcomes. In this review, we highlight the scientific evidence on the risk factors of severity of COVID-19.

703 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Findings that have advanced the understanding of IL-10 and its receptor are highlighted, as well as its in vivo function in health and disease.
Abstract: Interleukin-10 (IL-10), first recognized for its ability to inhibit activation and effector function of T cells, monocytes, and macrophages, is a multifunctional cytokine with diverse effects on most hemopoietic cell types. The principal routine function of IL-10 appears to be to limit and ultimately terminate inflammatory responses. In addition to these activities, IL-10 regulates growth and/or differentiation of B cells, NK cells, cytotoxic and helper T cells, mast cells, granulocytes, dendritic cells, keratinocytes, and endothelial cells. IL-10 plays a key role in differentiation and function of a newly appreciated type of T cell, the T regulatory cell, which may figure prominently in control of immune responses and tolerance in vivo. Uniquely among hemopoietic cytokines, IL-10 has closely related homologs in several virus genomes, which testify to its crucial role in regulating immune and inflammatory responses. This review highlights findings that have advanced our understanding of IL-10 and its receptor, as well as its in vivo function in health and disease.

6,308 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations

Journal ArticleDOI
TL;DR: This review summarizes the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation.
Abstract: CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation.

2,978 citations