scispace - formally typeset
Search or ask a question
Author

Muhammad Abid

Bio: Muhammad Abid is an academic researcher from Government College University, Faisalabad. The author has contributed to research in topics: Flange & Fault detection and isolation. The author has an hindex of 27, co-authored 377 publications receiving 3214 citations. Previous affiliations of Muhammad Abid include Quaid-i-Azam University & Pakistan Institute of Engineering and Applied Sciences.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of tack weld positions and root gap on welding distortions and residual stresses in a pipe-flange joint was investigated for single pass MIG welding for a single ‘V’ butt-weld joint geometry of a 100mm diameter pipe with compatible weld-neck ANSI flange class # 300 of low carbon steel.

148 citations

Journal ArticleDOI
TL;DR: Temperature, water, light and O2 are key conditions for F. graminearum growth and the development of its sexual reproduction structures on crop residues, although the fungus can resist for a long time under extreme conditions.
Abstract: Wheat is one of the most cultivated crops worldwide. In 2010, 20 % of wheat and durum wheat were cultivated in Europe, 17 % in China and 9 % in Russia and in North America. Wheat yield can be highly decreased by several factors. In particular Fusarium graminearum Schwabe is a worldwide fungal pest impacting wheat production. F. graminearum is the causal agent of Fusarium head blight, root and stem-base rot of cereals. Losses caused by Fusarium head blight in Northern and Central America from 1998 to 2002 reached $2.7 billion. Moreover, F. graminearum produces mycotoxins which affect human and animal health. The threshold of these mycotoxins in foodstuffs is regulated in Europe since 2007. F. graminearum survives for several years saprotrophically in the soil, on dead organic matter, particularly on crop residues. F. graminearum adapts to a wide range of environmental variations, and produces extracellular enzymes allowing feeding on different crop residues. However, F. graminearum competes with other decomposers such as other Fusarium spp. belonging to the same complex of species. Actually, it is not known whether F. graminearum mycotoxins give F. graminearum a competitive advantage during the saprotrophic period. Anthropogenic factors including preceding crops, tillage system and weed management can alter the development of the soil biota, which in turn can change the saprotrophic development of F. graminearum and disease risk. We review the ecological requirements of F. graminearum saprotrophic persistence. The major conclusions are: (1) temperature, water, light and O2 are key conditions for F. graminearum growth and the development of its sexual reproduction structures on crop residues, although the fungus can resist for a long time under extreme conditions. (2) F. graminearum survival is enhanced by high quantities of available crop residues and by rich residues, while sexual reproduction structures occur on poor residues. (3) F. graminearum is a poor competitor over time for residues decomposition. F. graminearum survival can be controlled by the enhancement of the decomposition processes by other organisms. In addition, the development of F. graminearum on crop residues can be limited by antagonistic fungi and soil animals growing at the expense of F. graminearum-infested residues. (4) Agricultural practices are key factors for the control of F. graminearum survival. A suitable crop rotation and an inversive tillage can limit the risk of Fusarium head blight development.

136 citations

Journal ArticleDOI
TL;DR: In this paper, a facile, scaled up, efficient and morphology-based novel WO3-g-C3N4 photocatalyst with different mass ratios was developed for the photodegradation of rhodamine B (RhB) under visible light irradiation.
Abstract: We have developed a facile, scaled up, efficient and morphology-based novel WO3–g-C3N4 photocatalyst with different mass ratios of WO3 and g-C3N4. It was used for the photodegradation of rhodamine B (RhB) under visible light irradiation and it showed excellent enhanced photocatalytic efficiency as compared to pure g-C3N4 and WO3. The apparent performance of the composite/hybrid was 3.65 times greater than pure WO3 and 3.72 times greater than pure g-C3N4 respectively, and it was also found to be much higher than the previously reported ones. Furthermore, the optical properties of composite samples were evaluated. The bandgap of composite samples lies in the range of 2.3–2.5 eV, which was favourable for photodegradation. The possible mechanism for enhanced catalytic efficiency of the WO3–g-C3N4 photocatalyst is discussed in detail. It was found that the enhanced performance is due to the synergistic effect between the WO3 and g-C3N4 interface, improved optical absorption in the visible region and suitable band positions of WO3–g-C3N4 composites.

67 citations

01 Jan 2012
TL;DR: Almost all varieties showed their best adaptation under stressed environment however Hashim-8 and Zam-04 behaved exclusively and indicated higher relative water content, mean productivity, geometric mean productivity and stress tolerance index (STI) whereas stress susceptibility index (SSI) and tolerance was estimated at its lowest.
Abstract: Plants of 6 bread wheat varieties (Damani, Hashim-8, Gomal-8, DN-73, Zam-04 and Dera-98) were subjected to 2 treatments i.e., control treatment (100% field capacity) and stressed treatment (20 days water stress was given during booting stage and 20 days water stress after anthesis). The findings revealed highly significant differences among means of wheat varieties in all physiological and yield traits. Almost all varieties showed their best adaptation under stressed environment however Hashim-8 and Zam-04 behaved exclusively and indicated higher relative water content (RWC), mean productivity (MP), geometric mean productivity (GMP) and stress tolerance index (STI) whereas stress susceptibility index (SSI) and tolerance (TOL) was estimated at its lowest, as these traits are recognised beneficial drought tolerance indicators for selection of a stress tolerant variety. Similarly, total grain yield per plant, biological yield per plant and harvest index was also higher in the same wheat varieties that put them as good candidates for selection criteria in wheat breeding program for drought resistant.

65 citations

Journal ArticleDOI
TL;DR: The isolate ZM 130 was found to be the most efficient in decolorizing reactive dyes in the presence of the mixture of heavy metals and was identified as Pseudomonas aeruginosa strain ZM130 by 16S rRNA gene analysis.
Abstract: Remediation of colored wastewater loaded with dyes and metal ions is a matter of interest nowadays. In this study, 220 bacteria isolated from textile wastewater were tested for their potential to decolorize each of the four reactive dyes (reactive red-120, reactive black-5, reactive yellow-2, and reactive orange-16) in the presence of a mixture of four different heavy metals (Cr, Zn, Pb, Cd) commonly found in textile effluents. Among the tested bacteria, the isolate ZM130 was found to be the most efficient in decolorizing reactive dyes in the presence of the mixture of heavy metals and was identified as Pseudomonas aeruginosa strain ZM130 by 16S rRNA gene analysis. The strain ZM130 was highly effective in simultaneously removing hexavalent chromium (25 mg L−1) and the azo dyes (100 mg L−1) from the simulated wastewater even in the presence of other three heavy metals (Zn, Pb, Cd). Simultaneous removal of chromium and azo dyes ranged as 76.6–98.7 % and 51.9–91.1 %, respectively, after 180 h incubation. On the basis of quadratic polynomial equation and response surfaces given by the response surface methodology (RSM), optimal salt content, pH, carbon co-substrate content, and level of multi-metal mixtures for decolorization of reactive red-120 in a simulated textile wastewater by the strain ZM130 were predicted to be 19.8, 7.8, and 6.33 g L−1 and a multi-metal mixture (Cr 13.10 mg L−1, Pb 26.21 mg L−1, Cd 13.10 mg L−1, Zn 26.21 mg L−1), respectively. Moreover, the strain ZM130 also exhibited laccase and nicotinamide adenine dinucleotide (reduced)-dichlorophenolindophenol reductase (NADH-DCIP reductase) activity during the decolorization of reactive red-120. However, the laccase activity was found to be maximum in the presence of 300 mg L−1 of the dye as compared to other concentrations. Hence, the isolation of this strain might serve as a potential bio-resource required for developing the strategies aiming at bioremediation of the wastewater contaminated with dyes and heavy metals.

59 citations


Cited by
More filters
Journal ArticleDOI

7,335 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

01 Jan 1993

2,271 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.

2,132 citations