scispace - formally typeset
Search or ask a question
Author

Muhammad Adeel

Other affiliations: University of Antwerp
Bio: Muhammad Adeel is an academic researcher from Shanghai Jiao Tong University. The author has contributed to research in topics: Copolymer & Polymerization. The author has an hindex of 11, co-authored 26 publications receiving 726 citations. Previous affiliations of Muhammad Adeel include University of Antwerp.

Papers
More filters
Journal ArticleDOI
TL;DR: The environmental and health hazards associated with a widespread distribution of micro-pollutants, pesticides, pharmaceuticals, hormones, and industrially-related synthetic dyes and dyes-containing hazardous pollutants, etc. in the water bodies are discussed.

449 citations

Journal ArticleDOI
TL;DR: Immobilization is highlighted as a promising approach to improve enzyme catalytic performance and stabilization, as well as, to protect the three-dimensional structure of the enzyme against the undesirable consequences of harsh reaction environment.

309 citations

Journal ArticleDOI
TL;DR: The structural geometry, unique properties, and functionalization of graphene derivatives and graphene-based nanomaterials as host for enzyme immobilization are highlighted in this review and the role of GO-based catalytic systems such as microfluidic bio-catalysis, enzyme-based biofuel cells, and biosensors are discussed.

110 citations

Journal ArticleDOI
TL;DR: In this paper, metal-organic frameworks (MOFs) have received accelerating research attention as a versatile carrier and promising bio-immobilization support materials for enzyme immobilization, such as surface area, high porosity, tunable topography, crystallinity, electronic and optical properties, thermal/chemical stability and multiple affinities.
Abstract: In recent years, metal–organic frameworks (MOFs) have received accelerating research attention as a versatile carrier and promising bio-immobilization support materials for enzyme immobilization. This is particularly due to their extraordinary structural properties and multi-functionalities, such as surface area, high porosity, tunable topography, crystallinity, electronic and optical properties, thermal/chemical stability and multiple affinities (hydrophobicity and hydrophilicity). Excellent biocatalytic performance, improved stability and repeatability, high loading ability, and greater accessibility to catalytic sites are the key attributes associated with the use of novel MOF–enzyme bio-composites. This review discusses the recent developments in the use of MOFs as immobilization support materials as a platform to engineer different kinds of enzymes with requisite functionalities for biocatalysis applications in different sectors of the modern world. The second part of the review mainly focuses on MOFs-assisted immobilization strategies including surface immobilization, covalent binding, cage inclusion and in situ MOF formation and enzyme immobilization to develop enzyme–MOF bio-catalytic system. The characteristic properties rendering MOFs as interesting matrices for bio-immobilization are also presented following applications of MOFs-immobilized bio-catalyst for catalysis, sensing and detection, and protein digestion. Lastly, the review is wrapped up with conclusions and an outlook in terms of upcoming challenges and prospects for their scale-up applications.

90 citations

Journal ArticleDOI
TL;DR: The potential applications of TiO2/SiO2 functionalized CNTs for the remediation of a variety of environmentally-related pollutants of high concern, including synthetic dyes or dye-based hazardous waste effluents, as polycyclic aromatic hydrocarbons (PAHs), pharmaceutically active compounds, pesticides, toxic heavy elements, remediated soil, and miscellaneous organic contaminants are discussed.

79 citations


Cited by
More filters
01 Dec 1991
TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Abstract: Molecular self-assembly is the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds. Molecular self-assembly is ubiquitous in biological systems and underlies the formation of a wide variety of complex biological structures. Understanding self-assembly and the associated noncovalent interactions that connect complementary interacting molecular surfaces in biological aggregates is a central concern in structural biochemistry. Self-assembly is also emerging as a new strategy in chemical synthesis, with the potential of generating nonbiological structures with dimensions of 1 to 10(2) nanometers (with molecular weights of 10(4) to 10(10) daltons). Structures in the upper part of this range of sizes are presently inaccessible through chemical synthesis, and the ability to prepare them would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

2,591 citations

Journal ArticleDOI
TL;DR: The risk data indicate that selected antibiotics may pose a threat to aquatic environments, and Cyanobacteria were the most sensitive organisms when using standard ecotoxicological bioassays.

582 citations

Journal ArticleDOI
TL;DR: This review highlights the advances in the use of MOFs in the elimination (adsorption and/or degradation) of EOCs from water, classifying them by the nature of the contaminant.
Abstract: Water is essential in all aspects of life, being the defining characteristic of our planet and even our body. Regrettably, water pollution is increasingly becoming a challenge due to novel anthropogenic pollutants. Of particular concern are emerging organic contaminants (EOCs), the term used not only to cover newly developed compounds but also compounds newly discovered as contaminants in the environment. Aside from anthropogenic contamination, higher temperature and more extreme and less predictable weather conditions are projected to affect water availability and distribution. Therefore, wastewater treatment has to become a valuable water resource and its reuse is an important issue that must be carried out efficiently. Among the novel technologies considered in water remediation processes, metal-organic frameworks (MOFs) are regarded as promising materials for the elimination of EOCs since they present many properties that commend them in water treatment: large surface area, easy functionalizable cavities, some are stable in water, and synthesized at large scale, etc. This review highlights the advances in the use of MOFs in the elimination (adsorption and/or degradation) of EOCs from water, classifying them by the nature of the contaminant.

542 citations

Journal ArticleDOI
01 Mar 2020-Small
TL;DR: This work outlines the synthesis and functionalization and the recent advances of MOFs in biomedical fields, including cargo (drugs, nucleic acids, proteins, and dyes) delivery for cancer therapy, bioimaging, antimicrobial, biosensing, and biocatalysis.
Abstract: Metal-organic frameworks (MOFs) are an interesting and useful class of coordination polymers, constructed from metal ion/cluster nodes and functional organic ligands through coordination bonds, and have attracted extensive research interest during the past decades. Due to the unique features of diverse compositions, facile synthesis, easy surface functionalization, high surface areas, adjustable porosity, and tunable biocompatibility, MOFs have been widely used in hydrogen/methane storage, catalysis, biological imaging and sensing, drug delivery, desalination, gas separation, magnetic and electronic devices, nonlinear optics, water vapor capture, etc. Notably, with the rapid development of synthetic methods and surface functionalization strategies, smart MOF-based nanocomposites with advanced bio-related properties have been designed and fabricated to meet the growing demands of MOF materials for biomedical applications. This work outlines the synthesis and functionalization and the recent advances of MOFs in biomedical fields, including cargo (drugs, nucleic acids, proteins, and dyes) delivery for cancer therapy, bioimaging, antimicrobial, biosensing, and biocatalysis. The prospects and challenges in the field of MOF-based biomedical materials are also discussed.

398 citations

Journal ArticleDOI
TL;DR: Immobilization is highlighted as a promising approach to improve enzyme catalytic performance and stabilization, as well as, to protect the three-dimensional structure of the enzyme against the undesirable consequences of harsh reaction environment.

309 citations