scispace - formally typeset
Search or ask a question
Author

Muhammad Akram Mohd Noordin

Bio: Muhammad Akram Mohd Noordin is an academic researcher from National University of Malaysia. The author has contributed to research in topics: Xanthone & Bioactive compound. The author has an hindex of 2, co-authored 3 publications receiving 6 citations.

Papers
More filters
Journal ArticleDOI
09 Oct 2018-Toxics
TL;DR: It is suggested that both XCE and α-MG are capable of inhibiting HepG2 cell proliferation during normoxic and hypoxic conditions, more effectively than 5-FU.
Abstract: Xanthone is an organic compound mostly found in mangosteen pericarp and widely known for its anti-proliferating effect on cancer cells. In this study, we evaluated the effects of xanthone crude extract (XCE) and α-mangostin (α-MG) on normoxic and hypoxic human hepatocellular carcinoma (HepG2) cells and their toxicity towards zebrafish embryos. XCE was isolated using a mixture of acetone and water (80:20) and verified via high performance liquid chromatography (HPLC). Both XCE and α-MG showed higher anti-proliferation effects on normoxic HepG2 cells compared to the control drug, 5-fluorouracil (IC50 = 50.23 ± 1.38, 8.39 ± 0.14, and 143.75 ± 15.31 μg/mL, respectively). In hypoxic conditions, HepG2 cells were two times less sensitive towards XCE compared to normoxic HepG2 cells (IC50 = 109.38 ± 1.80 μg/mL) and three times less sensitive when treated with >500 μg/mL 5-fluorouracil (5-FU). A similar trend was seen with the α-MG treatment on hypoxic HepG2 cells (IC50 = 10.11 ± 0.05 μg/mL) compared to normoxic HepG2 cells. However, at a concentration of 12.5 μg/mL, the α-MG treatment caused tail-bend deformities in surviving zebrafish embryos, while no malformation was observed when embryos were exposed to XCE and 5-FU treatments. Our study suggests that both XCE and α-MG are capable of inhibiting HepG2 cell proliferation during normoxic and hypoxic conditions, more effectively than 5-FU. However, XCE is the preferred option as no malformation was observed in surviving zebrafish embryos and it is more cost efficient than α-MG.

6 citations

Journal ArticleDOI
TL;DR: Various bioactive compounds from 26 different plant species known to affect both longevity and fertility are collected and discussed and could be developed into health supplements or potential medical drugs to ensure a healthy aging population.
Abstract: It is expected that in 2050, there will be more than 20% of senior citizens aged over 60 years worldwide. Such alarming statistics require immediate attention to improve the health of the aging population. Since aging is closely related to the loss of antioxidant defense mechanisms, this situation eventually leads to numerous health problems, including fertility reduction. Furthermore, plant extracts have been used in traditional medicine as potent antioxidant sources. Although many experiments had reported the impact of various bioactive compounds on aging or fertility, there is a lack of review papers that combine both subjects. In this review, we have collected and discussed various bioactive compounds from 26 different plant species known to affect both longevity and fertility. These compounds, including phenolics and terpenes, are mostly involved in the antioxidant defense mechanisms of diverse organisms such as rats, mites, fruit flies, roundworms, and even roosters. A human clinical trial should be considered in the future to measure the effects of these bioactive compounds on human health and longevity. Ultimately, these plant-derived compounds could be developed into health supplements or potential medical drugs to ensure a healthy aging population.

3 citations

Proceedings ArticleDOI
17 Nov 2016
TL;DR: This study investigates the toxicity level of xanthone in zebrafish embryo to for future reference on other animal model and found it did not harm the embryos and showed 100% of survival.
Abstract: Xanthone is a chemical compound identified in mangosteen pericarp. A previous study showed that xanthone has anti-proliferating effect on cancer cells. In this study we investigate the toxicity level of xanthone in zebrafish embryo to for future reference on other animal model. We employed Fish Embryo Toxicity (FET) assay to determine the toxicity level of different concentrations of xanthone. Embryos were observed at 24, 48 and 72 hours post fertilization (hpf) under microscope at 4× magnification. The extract showed toxicity effect on embryo at concentrations of 250, 125 and 62.5 µg/mL. Concentrations at 15.63, 7.81 and 3.91 µg / mL of xanthone did not harm the embryos and showed 100% of survival.

3 citations


Cited by
More filters
Journal ArticleDOI
12 Oct 2020
TL;DR: The goal of this review was to develop a link to ethnopharmacological zebrafish studies that can be used by other researchers to conduct future research and highlight its power as a tool for detecting toxicity of medicinal plants and its effectiveness at enhancing the understanding of new drug generation.
Abstract: The zebrafish (Danio rerio) is used as an embryonic and larval model to perform in vitro experiments and developmental toxicity studies. Zebrafish may be used to determine the toxicity of samples in early screening assays, often in a high-throughput manner. The zebrafish embryotoxicity model is at the leading edge of toxicology research due to the short time required for analyses, transparency of embryos, short life cycle, high fertility, and genetic data similarity. Zebrafish toxicity studies range from assessing the toxicity of bioactive compounds or crude extracts from plants to determining the optimal process. Most of the studied extracts were polar, such as ethanol, methanol, and aqueous solutions, which were used to detect the toxicity and bioactivity. This review examines the latest research using zebrafish as a study model and highlights its power as a tool for detecting toxicity of medicinal plants and its effectiveness at enhancing the understanding of new drug generation. The goal of this review was to develop a link to ethnopharmacological zebrafish studies that can be used by other researchers to conduct future research.

60 citations

Journal ArticleDOI
TL;DR: In this article , a review summarizes the work that has been done to explore and explain the anticancer and antitumor activities of α-mangostin, lesser xanthones, and mangosteen extracts in vitro, in vivo, and in humans in various cancers.
Abstract: The purple mangosteen (Garcinia mangostana) is a popular Southeast Asian fruit that has been used traditionally for its health promoting benefits for years. Unique to the mangosteen are a class of phytochemicals known as xanthones that have been reported to display significant anti-cancer and anti-tumor activities, specifically through the promotion of apoptosis, targeting of specific cancer-related proteins, or modulation of cell signaling pathways. α-Mangostin, the most abundant xanthone isolated from the mangosteen, has received substantial attention as it has proven to be a potent phytochemical, specifically as an anticancer agent, in numerous different cancer cell studies and cancer animal models. While the mechanisms for these anticancer effects have been reported in many studies, lesser xanthones, including gartanin, β-mangostin, γ-mangostin, garcinone C, and garcinone E, and mangosteen extracts from the pericarp, roots, rind, and stem show promise for their anticancer activity but their mechanisms of action are not as well developed and remain to be determined. Mangosteen products appear safe and have been well tolerated in human clinical trials where they show antioxidant activity, though their clinical anticancer activity has not yet been evaluated. This review summarizes the work that has been done to explore and explain the anticancer and antitumor activities of α-mangostin, lesser xanthones, and mangosteen extracts in vitro, in vivo, and in humans in various cancers.

11 citations

Journal ArticleDOI
TL;DR: It is suggested that tannins were more toxic than the xanthones derived from mangosteen pericarp.
Abstract: Objective: The objective of this study is to compare the toxicity level of xanthones and tannins derived from mangosteen pericarp extract at specific concentrations against BHK-21 fibroblast cell cultures. Methods: Mangosteen was extracted using a maceration method with ethanol 96%. Xanthones were isolated from the chloroform extract, whereas tannins were isolated using acetone alcohol and serial diluted to 100% concentration. Toxicity levels were monitored after 24 h using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay technique by ELISA reader at 620 nm. Results: Viable cells of BHK-21 against xanthone concentration began to decrease (40.24%) at 3.98% xanthones, whereas viable cells of BHK-21 against tannin concentration began to decrease (68.06%) at 2.2% tannins. Conclusion: It is suggested that tannins were more toxic than the xanthones derived from mangosteen pericarp.

9 citations

Journal ArticleDOI
TL;DR: The ability of natural extracts to inhibit melanocyte activity is of great interest to researchers as mentioned in this paper. But, the authors in this paper evaluate and explore the ability of mutated Shiitake (A37) and wild-type ShiITake (WE) extract to inhibit this activity.
Abstract: The ability of natural extracts to inhibit melanocyte activity is of great interest to researchers. This study evaluates and explores the ability of mutated Shiitake (A37) and wildtype Shiitake (WE) extract to inhibit this activity. Several properties such as total phenolic (TPC) and total flavonoid content (TFC), antioxidant activity, effect on cell and component profiling were conducted. While having no significant differences in total phenolic content, mutation resulted in A37 having a TFC content (1.04 ± 0.7 mg/100 mL) compared to WE (0.86 ± 0.9 mg/100 ml). Despite that, A37 extract has lower antioxidant activity (EC50, A37 = 549.6 ± 2.70 μg/ml) than WE (EC50 = 52.8 ± 1.19 μg/ml). Toxicity tests on zebrafish embryos show that both extracts, stop the embryogenesis process when the concentration used exceeds 900 μg/ml. Although both extracts showed pigmentation reduction in zebrafish embryos, A37 extract showed no effect on embryo heartbeat. Cell cycle studies revealed that WE significantly affect the cell cycle while A37 not. Further tests found that these extracts inhibit the phosphorylation of Glycogen synthase kinase 3 β (pGSK3β) in HS27 cell line, which may explain the activation of apoptosis in melanin-producing cells. It was found that from 19 known compounds, 14 compounds were present in both WE and A37 extracts. Interestingly, the presence of decitabine in A37 extract makes it very potential for use in the medical application such as treatment of melanoma, skin therapy and even cancer.

5 citations

Journal ArticleDOI
TL;DR: Various bioactive compounds from 26 different plant species known to affect both longevity and fertility are collected and discussed and could be developed into health supplements or potential medical drugs to ensure a healthy aging population.
Abstract: It is expected that in 2050, there will be more than 20% of senior citizens aged over 60 years worldwide. Such alarming statistics require immediate attention to improve the health of the aging population. Since aging is closely related to the loss of antioxidant defense mechanisms, this situation eventually leads to numerous health problems, including fertility reduction. Furthermore, plant extracts have been used in traditional medicine as potent antioxidant sources. Although many experiments had reported the impact of various bioactive compounds on aging or fertility, there is a lack of review papers that combine both subjects. In this review, we have collected and discussed various bioactive compounds from 26 different plant species known to affect both longevity and fertility. These compounds, including phenolics and terpenes, are mostly involved in the antioxidant defense mechanisms of diverse organisms such as rats, mites, fruit flies, roundworms, and even roosters. A human clinical trial should be considered in the future to measure the effects of these bioactive compounds on human health and longevity. Ultimately, these plant-derived compounds could be developed into health supplements or potential medical drugs to ensure a healthy aging population.

3 citations