scispace - formally typeset
Search or ask a question
Author

Muhammad Arshad

Bio: Muhammad Arshad is an academic researcher from University of the Sciences. The author has contributed to research in topics: Materials science & Adsorption. The author has an hindex of 24, co-authored 132 publications receiving 2361 citations. Previous affiliations of Muhammad Arshad include University of Agriculture, Faisalabad & Ecolab.


Papers
More filters
Journal ArticleDOI
TL;DR: The results depicted that NPs positively affected the photosynthesis of wheat as compared to the control, suggesting that the NPs play a major role in the increase in biomass, nutrients and decrease in Cd toxicity in wheat.
Abstract: The effects of seed priming with zinc oxide (ZnO) and iron (Fe) nanoparticles (NPs) on the growth and cadmium (Cd) accumulation by wheat (Triticum aestivum) were investigated. Seeds of wheat were primed with different concentrations of either ZnO NPs (0, 25, 50, 75, and 100 mg L−1) or Fe NPs (0, 5, 10, 15, and 20 mg L−1) for 24 h by continuous aeration and then the seeds were sown in a soil which was contaminated with Cd due to long-term application of sewage water. Plants were grown till maturity under natural conditions with 60–70% moisture contents of total soil water holding capacity throughout the experiment. Plant height, spike length, and dry weights of shoots, roots, spikes, and grains were increased with NPs, in particular with the higher rates of NPs. The results depicted that NPs positively affected the photosynthesis of wheat as compared to the control. The NPs reduced the electrolyte leakage and superoxide dismutase and peroxidase activities in leaves of Cd-stressed wheat. The concentrations of Cd in roots, shoots, and grains were significantly decreased with NPs application. The Cd content in the grains was below the threshold level of Cd (0.2 mg kg−1) for cereals when the seeds were treated with higher NPs treatments. The application of ZnO NPs increased the Zn concentrations and Fe NPs increased the Fe concentrations in roots, shoots, and grains. Overall, the NPs play a major role in the increase in biomass, nutrients and decrease in Cd toxicity in wheat.

452 citations

Journal ArticleDOI
TL;DR: Results indicate that BC could be used as an amendment in metal contaminated soil for improving wheat growth and reducing Cd concentrations under semiarid conditions.
Abstract: Cadmium (Cd) and drought stress in plants is a worldwide problem, whereas little is known about the effect of biochar (BC) under combined Cd and drought stress. The current study was conducted to determine the impact of BC on Cd uptake in wheat sown in Cd-contaminated soil under drought stress. Wheat was grown in a soil after incubating the soil for 15 days with three levels of BC (0%, 3.0% and 5.0% w/w). Three levels of drought stress (well-watered, mild drought and severe drought containing 70%, 50%, and 35% of soil water holding capacity respectively) were applied to 45-d-old wheat plants. Drought stress decreased plant height, spike length, chlorophyll contents, gas exchange parameters, root and shoot dry biomasses and grain yields. Drought stress also caused oxidative stress and decreased the antioxidant enzymes activities whereas increased the Cd concentration in plants. Biochar increased morphological and physiological parameters of wheat under combined drought and Cd stress and reduced the oxidative stress and Cd contents and increased antioxidant enzymes activities. The decrease in Cd concentration with BC application in drought-stressed plant might be attributed to BC-induced increase in crop biomass production and reduction in oxidative stress. These results indicate that BC could be used as an amendment in metal contaminated soil for improving wheat growth and reducing Cd concentrations under semiarid conditions.

212 citations

Journal ArticleDOI
TL;DR: Phytoremediation appears to be a promising technique for metal soil clean up, although its successful application on a large scale still remains a challenge.
Abstract: Phytoremediation appears to be a promising technique for metal soil clean up, although its successful application on a large scale still remains a challenge. Field experiments for six scented Pelargonium cultivars, conducted on two Pb-contaminated calcareous and acidic soils, revealed vigorous plant growth, with no symptoms of morpho-phytotoxicity in spite of high Pb accumulation levels. Lead contents in the harvestable parts of all plants grown on the acidic and more contaminated soil were significantly higher than those grown on the calcareous soil. Three cultivars (Attar of Roses, Clorinda and Atomic Snowflake) are Pb-hyperaccumulator plants: they accumulated more than 1,000 mg Pb kg(-1)DW, with high biomass produced.

190 citations

Journal ArticleDOI
TL;DR: In this paper, the authors highlight the recent findings (2010-2012) and mechanisms behind EDTA-enhanced (1) solubilization of heavy metals in soil, (2) mobilization/transport of soluble metals towards plant root zone, and (3) metal absorption by plant roots and translocation towar
Abstract: The increase in heavy metal terrestrial ecosystems’ contamination through anthropogenic activities is a widespread and serious global problem due to their various environmental and human implications. For these reasons, several techniques, including phytoremediation of heavy metals, have been extensively studied. In spite of significant recent advancement, ethylene diamine tetraacetic acid (EDTA)-enhanced heavy metal phytoextraction as well as related ecological risks are still topical and remain an important area of research. In fact, EDTA favors the solubilization of metals and metalloids in soils, and was therefore extensively studied during the last two decades in order to improve phytoextraction efficiency and reduce treatment duration. This review highlights the recent findings (2010–2012) and mechanisms behind EDTA-enhanced (1) solubilization of heavy metals in soil, (2) mobilization/transport of soluble metals towards plant root zone, and (3) metal absorption by plant roots and translocation towar...

182 citations

Journal ArticleDOI
TL;DR: Overall, biochar combined with foliar spray of ZnO NPs could be recommended for safely growing the crops on Cd-contaminated soils.
Abstract: Due to the increase in area of cadmium (Cd)-contaminated soils worldwide, effective measures are necessary to minimize the Cd accumulation in cereals including maize (Zea mays L.) plant. A study was therefore performed to explore the effectiveness of foliar spray of zinc oxide (ZnO) nanoparticle (NPs) alone (0, 50, 75, 100 mg/L) or combined with soil application of biochar (1.0% w/w) on biomass, antioxidant enzyme activity and Cd concentrations in maize plants grown on a Cd-contaminated soil. The results depicted that ZnO NPs alone or in combination with biochar improved the height of maize plants, number of leaves, shoot and roots dry biomass, chlorophyll concentrations and gas exchange attributes. All the amendments reduced the electrolyte leakage, malondialdehyde, and hydrogen peroxide contents while improved the activities of antioxidant enzymes in leaf and roots of maize over the control. The application of 50, 75 and 100 mg/L ZnO NPs reduced the Cd contents in shoots by about 12%, 23, and 61%, and in roots by 18%, 33%, and 53%, respectively, over the control. The Cd concentrations in shoot decreased by 15%, 28%, and 68% and in roots by 14%, 35, and 55% after biochar combined with foliar spray of 50, 75 and 100 mg/L ZnO NPs, respectively. All the amendments improved the Zn concentrations in maize shoots and roots whereas reduced the soil bioavailable Cd. Overall, biochar combined with foliar spray of ZnO NPs could be recommended for safely growing the crops on Cd-contaminated soils.

181 citations


Cited by
More filters
Journal ArticleDOI

7,335 citations

Journal ArticleDOI
TL;DR: The fundamentals, recent research progress, present status, and views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices are described.
Abstract: The photovoltaics of organic–inorganic lead halide perovskite materials have shown rapid improvements in solar cell performance, surpassing the top efficiency of semiconductor compounds such as CdTe and CIGS (copper indium gallium selenide) used in solar cells in just about a decade. Perovskite preparation via simple and inexpensive solution processes demonstrates the immense potential of this thin-film solar cell technology to become a low-cost alternative to the presently commercially available photovoltaic technologies. Significant developments in almost all aspects of perovskite solar cells and discoveries of some fascinating properties of such hybrid perovskites have been made recently. This Review describes the fundamentals, recent research progress, present status, and our views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices. Strategies and challenges regardi...

1,720 citations

Journal Article
TL;DR: This work found significant variation in Arabidopsis thaliana ecotypes in accumulation and tolerance of Pb, and screened ethyl methanesulfonate-mutagenized M2 populations and identified several Pb-accumulating mutants.
Abstract: In addition to the often-cited advantages of using Arabidopsis thaliana as a model system in plant biological research (1), Arabidopsis has many additional characteristics that make it an attractive experimental organism for studying lea d (Pb) accumulation and tolerance in plants. These include its fortuitous familial relationship to many known metal hyperaccumulators (Brassicaceae), as well as similar Pbaccumulation patterns to most other plants. Using nutrient-agar plates, hydroponic culture, and Pb-contaminated soils as growth media, we found significant variation in Arabidopsis thaliana ecotypes in accumulation and tolerance of Pb. In addition, we have found that Pb accumulation is not obligatorily linked with Pb tolerance, suggesti ng that different genetic factors control these two processes. We also screened ethyl methanesulfonate-mutagenized M2 populations and identified several Pb-accumulating mutants. Current characterization of these mutants indicates that their phenotypes are likely due to alteration of general metal ion uptake or translocation processes since these mutants also accumulate many other metals in shoots. We expect that further characterization of the ecotypes and mutants will shed light on the basic genetic and physiological underpinnings of plant-based Pb remediation. 7. Aromatic nitroreduction of acifluorfen in soils, rhizospheres, and pure cultures of rhizobacteria. Zablotowicz, R. M., Locke, M. A., and Hoagland, R. E. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 38-53. NAL Call #: QD1.A45-no.664 Abstract: Reduction of nitroaromatic compounds to their corresponding amino derivatives is one of several pathways in the degradation of nitroxenobiotics. Our studies with the nitrodiphenyl ether herbicide acifluorfen showed rapid metabolism to am inoacifluorfen followed by incorporation into unextractable soil components in both soil and rhizosphere suspensions. Aminoacifluorfen was formed more rapidly in rhizospheres compared to soil, which can be attributed to higher microbial populations, espec ially of Gram-negative bacteria. We identified several strains of Pseudomonas fluorescens that possess nitroreductase activity capable of converting acifluorfen to aminoacifluorfen. Factors affecting acifluorfen nitroreductase activity in pure cultures an d cell-free extracts, and other catabolic transformations of acifluorfen, ether bond cleavage, are discussed. Plant rhizospheres should be conducive for aromatic nitroreduction. Nitroreduction by rhizobacteria is an important catabolic pathway for the ini tial degradation of various nitroherbicides and other nitroaromatic compounds in soils under Reduction of nitroaromatic compounds to their corresponding amino derivatives is one of several pathways in the degradation of nitroxenobiotics. Our studies with the nitrodiphenyl ether herbicide acifluorfen showed rapid metabolism to am inoacifluorfen followed by incorporation into unextractable soil components in both soil and rhizosphere suspensions. Aminoacifluorfen was formed more rapidly in rhizospheres compared to soil, which can be attributed to higher microbial populations, espec ially of Gram-negative bacteria. We identified several strains of Pseudomonas fluorescens that possess nitroreductase activity capable of converting acifluorfen to aminoacifluorfen. Factors affecting acifluorfen nitroreductase activity in pure cultures an d cell-free extracts, and other catabolic transformations of acifluorfen, ether bond cleavage, are discussed. Plant rhizospheres should be conducive for aromatic nitroreduction. Nitroreduction by rhizobacteria is an important catabolic pathway for the ini tial degradation of various nitroherbicides and other nitroaromatic compounds in soils under phytoremediation management. 8. Ascorbate: a biomarker of herbicide stress in wetland plants. Lytle, T. F. and Lytle, J. S. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 106-113. NAL Call #: QD1.A45-no.664 Abstract: In laboratory exposures of wetland plants to low herbicide levels (<0.1 micrograms/mL), some plants showed increased total ascorbic acid suggesting a stimulatory effect on ascorbic acid synthesis occurred; at higher herbicide conce ntrations (greater than or equal to 0.1 micrograms/mL) a notable decline in total ascorbic acid and increase in the oxidized form, dehydroascorbic acid occurred. Vigna luteola and Sesbania vesicaria were exposed for 7 and 21 days respectively to atrazine (0.05 to 1 microgram/mL); Spartina alterniflora 28 days at 0.1 micrograms/mL trifluralin; Hibiscus moscheutos 14 days at 0.1 and 1 microgram/mL metolachlor in fresh and brackish water. The greatest increase following low dosage occurred with S. alterniflo ra, increasing from <600 micrograms/g wet wt. total ascorbic acid to >1000 micrograms/g. Ascorbic acid may be a promising biomarker of estuarine plants exposed to herbicide runoff; stimulation of ascorbic acid synthesis may enable some wetland plant s used in phytoremediation to cope with low levels of these compounds. In laboratory exposures of wetland plants to low herbicide levels (<0.1 micrograms/mL), some plants showed increased total ascorbic acid suggesting a stimulatory effect on ascorbic acid synthesis occurred; at higher herbicide conce ntrations (greater than or equal to 0.1 micrograms/mL) a notable decline in total ascorbic acid and increase in the oxidized form, dehydroascorbic acid occurred. Vigna luteola and Sesbania vesicaria were exposed for 7 and 21 days respectively to atrazine (0.05 to 1 microgram/mL); Spartina alterniflora 28 days at 0.1 micrograms/mL trifluralin; Hibiscus moscheutos 14 days at 0.1 and 1 microgram/mL metolachlor in fresh and brackish water. The greatest increase following low dosage occurred with S. alterniflo ra, increasing from <600 micrograms/g wet wt. total ascorbic acid to >1000 micrograms/g. Ascorbic acid may be a promising biomarker of estuarine plants exposed to herbicide runoff; stimulation of ascorbic acid synthesis may enable some wetland plant s used in phytoremediation to cope with low levels of these compounds. 9. Atmospheric nitrogenous compounds and ozone--is NO(x) fixation by plants a possible solution. Wellburn, A. R. New phytol. 139: 1 pp. 5-9. (May 1998). NAL Call #: 450-N42 Descriptors: ozoneair-pollution nitrogen-dioxide nitric-oxide air-quality tolerancebioremediationacclimatizationnutrient-sources nutrient-uptake plantscultivarsgenetic-variation literature-reviews 10. Atrazine degradation in pesticide-contaminated soils: phytoremediation potential. Kruger, E. L., Anhalt, J. C., Sorenson, D., Nelson, B., Chouhy, A. L., Anderson, T. A., and Coats, J. R. Phytoremediation of soil and water contaminants. Washington, DC : American Chemical Society, 1997. p. 54-64. NAL Call #: QD1.A45-no. 664 Abstract: Studies were conducted in the laboratory to determine the fate of atrazine in pesticide-contaminated soils from agrochemical dealer sites. No significant differences in atrazine concentrations occurred in soils treated with atrazine i ndividually or combinations with metolachlor and trifluralin. In a screening study carried out in soils from four agrochemical dealer sites, rapid mineralization of atrazine occurred in three out of eight soils tested, with the greatest amount occurring i n Bravo rhizosphere soil (35% of the applied atrazine after 9 weeks). Suppression of atrazine mineralization in the Bravo rhizosphere soil did not occur with the addition of high concentrations of herbicide mixtures, but instead was increased. Plants had a positive impact on dissipation of aged Studies were conducted in the laboratory to determine the fate of atrazine in pesticide-contaminated soils from agrochemical dealer sites. No significant differences in atrazine concentrations occurred in soils treated with atrazine i ndividually or combinations with metolachlor and trifluralin. In a screening study carried out in soils from four agrochemical dealer sites, rapid mineralization of atrazine occurred in three out of eight soils tested, with the greatest amount occurring i n Bravo rhizosphere soil (35% of the applied atrazine after 9 weeks). Suppression of atrazine mineralization in the Bravo rhizosphere soil did not occur with the addition of high concentrations of herbicide mixtures, but instead was increased. Plants had a positive impact on dissipation of aged atrazine in soil, with significantly less atrazine extractable from Kochia-vegetated soils than from nonvegetated soils. 11. Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil. Siciliano, S. D. and Germida, J. J. Environ toxicol chem. 16: 6 pp. 1098-1104. (June 1997). NAL Call #: QH545.A1E58 Descriptors: polluted-soils bioremediationAbstract: Biological remediation of contaminated soil is an effective method of reducing risk to human and ecosystem health. Bacteria and plants might be used to enhance remediation of soil pollutants in situ. This study assessed the potential of bacteria (12 isolates), plants (16 forage grasses), and plant-bacteria associations (selected pairings) to remediate 2-chlorobenzoic acid (2CBA)-contaminated soil. Initially, grass viability was assessed in 2CBA-contaminated soil. Soil was contaminated wi th 2CBA, forage grasses were grown under growth chamber conditions for 42 or 60 d, and the 2CBA concentration in soil was determined by gas chromatography. Only five of 16 forage grasses grew in 2CBA-treated (816 mg/kg) soil. Growth of Bromus inermis had no effect on 2CBA concentration, whereas Agropyron intermedium, B. biebersteinii, A. riparum, and Elymus dauricus decreased 2CBA relative to nonplanted control soil by 32 to 42%. The 12 bacteria isolates were screened for their ability to promote the germ ination of the five grasses in 2CBA-contaminated soil. Inoculation of A. riparum with Pseudomonas aeruginos

1,049 citations

Journal ArticleDOI
TL;DR: This review has documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species.
Abstract: Global climate change and associated adverse abiotic stress conditions, such as drought, salinity, heavy metals, waterlogging, extreme temperatures, oxygen deprivation, etc., greatly influence plant growth and development, ultimately affecting crop yield and quality, as well as agricultural sustainability in general. Plant cells produce oxygen radicals and their derivatives, so-called reactive oxygen species (ROS), during various processes associated with abiotic stress. Moreover, the generation of ROS is a fundamental process in higher plants and employs to transmit cellular signaling information in response to the changing environmental conditions. One of the most crucial consequences of abiotic stress is the disturbance of the equilibrium between the generation of ROS and antioxidant defense systems triggering the excessive accumulation of ROS and inducing oxidative stress in plants. Notably, the equilibrium between the detoxification and generation of ROS is maintained by both enzymatic and nonenzymatic antioxidant defense systems under harsh environmental stresses. Although this field of research has attracted massive interest, it largely remains unexplored, and our understanding of ROS signaling remains poorly understood. In this review, we have documented the recent advancement illustrating the harmful effects of ROS, antioxidant defense system involved in ROS detoxification under different abiotic stresses, and molecular cross-talk with other important signal molecules such as reactive nitrogen, sulfur, and carbonyl species. In addition, state-of-the-art molecular approaches of ROS-mediated improvement in plant antioxidant defense during the acclimation process against abiotic stresses have also been discussed.

1,028 citations

Journal ArticleDOI
TL;DR: In this article, a review of the current status of technology deployment and recommendations for future remediation research is presented. And the authors also elucidate and compare the available technologies that are currently being applied for remediation of heavy metal(loid) contaminated soils, as well as the economic aspect of soil remediation for different techniques.
Abstract: Soil contamination with persistent and potentially (eco)toxic heavy metal(loid)s is ubiquitous around the globe. Concentration of these heavy metal(loid)s in soil has increased drastically over the last three decades, thus posing risk to the environment and human health. Some technologies have long been in use to remediate the hazardous heavy metal(loid)s. Conventional remediation methods for heavy metal(loid)s are generally based on physical, chemical and biological approaches, which may be used in combination with one another to clean-up heavy metal(loid) contaminated soils to an acceptable and safe level. This review summarizes the soil contamination by heavy metal(loid)s at a global scale, accumulation of heavy metal(loid)s in vegetables to toxic levels and their regulatory guidelines in soil. In this review, we also elucidate and compare the pool of available technologies that are currently being applied for remediation of heavy metal(loid) contaminated soils, as well as the economic aspect of soil remediation for different techniques. This review article includes an assessment of the contemporary status of technology deployment and recommendations for future remediation research. Finally, the molecular and genetic basis of heavy metal(loid) (hyper)accumulation and tolerance in microbes and plants is also discussed. It is proposed that for effective and economic remediation of soil, a better understanding of remediation procedures and the various options available at the different stages of remediation is highly necessary.

792 citations