scispace - formally typeset
Search or ask a question
Author

Muhammad Haris

Other affiliations: ETH Zurich, York University
Bio: Muhammad Haris is an academic researcher from Seoul National University. The author has contributed to research in topics: Real image & Image resolution. The author has an hindex of 4, co-authored 4 publications receiving 149 citations. Previous affiliations of Muhammad Haris include ETH Zurich & York University.
Topics: Real image, Image resolution, Deblurring, sRGB, Color space

Papers
More filters
Proceedings Article•DOI•
16 Jun 2019
TL;DR: The proposed methods by the 15 teams represent the current state-of-the-art performance in image denoising targeting real noisy images.
Abstract: This paper reviews the NTIRE 2019 challenge on real image denoising with focus on the proposed methods and their results. The challenge has two tracks for quantitatively evaluating image denoising performance in (1) the Bayer-pattern raw-RGB and (2) the standard RGB (sRGB) color spaces. The tracks had 216 and 220 registered participants, respectively. A total of 15 teams, proposing 17 methods, competed in the final phase of the challenge. The proposed methods by the 15 teams represent the current state-of-the-art performance in image denoising targeting real noisy images.

99 citations

Proceedings Article•DOI•
16 Jun 2019
TL;DR: The first NTIRE challenge on perceptual image enhancement as discussed by the authors focused on proposed solutions and results of real-world photo enhancement problem, where the goal was to map low-quality photos from the iPhone 3GS device to the same photos captured with Canon 70D DSLR camera.
Abstract: This paper reviews the first NTIRE challenge on perceptual image enhancement with the focus on proposed solutions and results. The participating teams were solving a real-world photo enhancement problem, where the goal was to map low-quality photos from the iPhone 3GS device to the same photos captured with Canon 70D DSLR camera. The considered problem embraced a number of computer vision subtasks, such as image denoising, image resolution and sharpness enhancement, image color/contrast/exposure adjustment, etc. The target metric used in this challenge combined PSNR and SSIM scores with solutions' perceptual results measured in the user study. The proposed solutions significantly improved baseline results, defining the state-of-the-art for practical image enhancement.

45 citations

Proceedings Article•DOI•
16 Jun 2019
TL;DR: This paper reviews the first NTIRE challenge on video deblurring (restoration of rich details and high frequency components from blurred video frames) with focus on the proposed solutions and results.
Abstract: This paper reviews the first NTIRE challenge on video deblurring (restoration of rich details and high frequency components from blurred video frames) with focus on the proposed solutions and results. A new REalistic and Diverse Scenes dataset (REDS) was employed. The challenge was divided into 2 tracks. Track 1 employed dynamic motion blurs while Track 2 had additional MPEG video compression artifacts. Each competition had 109 and 93 registered participants. Total 13 teams competed in the final testing phase. They gauge the state-of-the-art in video deblurring problem.

39 citations

Proceedings Article•DOI•
16 Jun 2019
TL;DR: This paper reviews the first NTIRE challenge on video super-resolution (restoration of rich details in low-resolution video frames) with focus on proposed solutions and results and gauge the state-of-the-art in videosuper-resolution.
Abstract: This paper reviews the first NTIRE challenge on video super-resolution (restoration of rich details in low-resolution video frames) with focus on proposed solutions and results. A new REalistic and Diverse Scenes dataset (REDS) was employed. The challenge was divided into 2 tracks. Track 1 employed standard bicubic downscaling setup while Track 2 had realistic dynamic motion blurs. Each competition had 124 and 104 registered participants. There were total 14 teams in the final testing phase. They gauge the state-of-the-art in video super-resolution.

36 citations


Cited by
More filters
Posted Content•
TL;DR: The superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, is shown, suggesting that the HRNet is a stronger backbone for computer vision problems.
Abstract: High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions \emph{in series} (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution representation. Instead, our proposed network, named as High-Resolution Network (HRNet), maintains high-resolution representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution convolution streams \emph{in parallel}; (ii) Repeatedly exchange the information across resolutions. The benefit is that the resulting representation is semantically richer and spatially more precise. We show the superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, suggesting that the HRNet is a stronger backbone for computer vision problems. All the codes are available at~{\url{this https URL}}.

1,278 citations

Journal Article•DOI•
TL;DR: The High-Resolution Network (HRNet) as mentioned in this paper maintains high-resolution representations through the whole process by connecting the high-to-low resolution convolution streams in parallel and repeatedly exchanging the information across resolutions.
Abstract: High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions in series (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution representation. Instead, our proposed network, named as High-Resolution Network (HRNet), maintains high-resolution representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution convolution streams in parallel and (ii) repeatedly exchange the information across resolutions. The benefit is that the resulting representation is semantically richer and spatially more precise. We show the superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, suggesting that the HRNet is a stronger backbone for computer vision problems. All the codes are available at https://github.com/HRNet .

1,162 citations

Proceedings Article•DOI•
01 Jun 2019
TL;DR: This work proposes a novel Video Restoration framework with Enhanced Deformable convolutions, termed EDVR, and proposes a Temporal and Spatial Attention (TSA) fusion module, in which attention is applied both temporally and spatially, so as to emphasize important features for subsequent restoration.
Abstract: Video restoration tasks, including super-resolution, deblurring, etc, are drawing increasing attention in the computer vision community. A challenging benchmark named REDS is released in the NTIRE19 Challenge. This new benchmark challenges existing methods from two aspects: (1) how to align multiple frames given large motions, and (2) how to effectively fuse different frames with diverse motion and blur. In this work, we propose a novel Video Restoration framework with Enhanced Deformable convolutions, termed EDVR, to address these challenges. First, to handle large motions, we devise a Pyramid, Cascading and Deformable (PCD) alignment module, in which frame alignment is done at the feature level using deformable convolutions in a coarse-to-fine manner. Second, we propose a Temporal and Spatial Attention (TSA) fusion module, in which attention is applied both temporally and spatially, so as to emphasize important features for subsequent restoration. Thanks to these modules, our EDVR wins the champions and outperforms the second place by a large margin in all four tracks in the NTIRE19 video restoration and enhancement challenges. EDVR also demonstrates superior performance to state-of-the-art published methods on video super-resolution and deblurring. The code is available at https://github.com/xinntao/EDVR.

806 citations

Proceedings Article•DOI•
04 Feb 2021
TL;DR: MPRNet as discussed by the authors proposes a multi-stage architecture that progressively learns restoration functions for the degraded inputs, thereby breaking down the overall recovery process into more manageable steps, and introduces a novel per-pixel adaptive design that leverages in-situ supervised attention to reweight the local features.
Abstract: Image restoration tasks demand a complex balance between spatial details and high-level contextualized information while recovering images. In this paper, we propose a novel synergistic design that can optimally balance these competing goals. Our main proposal is a multi-stage architecture, that progressively learns restoration functions for the degraded inputs, thereby breaking down the overall recovery process into more manageable steps. Specifically, our model first learns the contextualized features using encoder-decoder architectures and later combines them with a high-resolution branch that retains local information. At each stage, we introduce a novel per-pixel adaptive design that leverages in-situ supervised attention to reweight the local features. A key ingredient in such a multi-stage architecture is the information exchange between different stages. To this end, we propose a two-faceted approach where the information is not only exchanged sequentially from early to late stages, but lateral connections between feature processing blocks also exist to avoid any loss of information. The resulting tightly interlinked multi-stage architecture, named as MPRNet, delivers strong performance gains on ten datasets across a range of tasks including image deraining, deblurring, and denoising. The source code and pre-trained models are available at https://github.com/swz30/MPRNet.

716 citations

Proceedings Article•DOI•
01 Jun 2021
TL;DR: Non-local sparse attention (NLSA) as mentioned in this paper is designed to retain long-range modeling capability from non-local operation while enjoying robustness and high-efficiency of sparse representation, which partitions the input space into hash buckets of related features.
Abstract: Both Non-Local (NL) operation and sparse representation are crucial for Single Image Super-Resolution (SISR). In this paper, we investigate their combinations and propose a novel Non-Local Sparse Attention (NLSA) with dynamic sparse attention pattern. NLSA is designed to retain long-range modeling capability from NL operation while enjoying robustness and high-efficiency of sparse representation. Specifically, NLSA rectifies non-local attention with spherical locality sensitive hashing (LSH) that partitions the input space into hash buckets of related features. For every query signal, NLSA assigns a bucket to it and only computes attention within the bucket. The resulting sparse attention prevents the model from attending to locations that are noisy and less-informative, while reducing the computational cost from quadratic to asymptotic linear with respect to the spatial size. Extensive experiments validate the effectiveness and efficiency of NLSA. With a few non-local sparse attention modules, our architecture, called non-local sparse network (NLSN), reaches state-of-the-art performance for SISR quantitatively and qualitatively.

216 citations