scispace - formally typeset
Search or ask a question
Author

Muhammad Imran Razzak

Bio: Muhammad Imran Razzak is an academic researcher from University of Technology, Sydney. The author has contributed to research in topics: Cursive & Arabic script. The author has an hindex of 25, co-authored 85 publications receiving 2240 citations. Previous affiliations of Muhammad Imran Razzak include University of Sydney & King Saud University.


Papers
More filters
Book ChapterDOI
01 Jan 2018
TL;DR: In this paper, the authors discuss state-of-the-art deep learning architecture and its optimization when used for medical image segmentation and classification, and discuss the challenges of deep learning methods with regard to medical imaging and open research issue.
Abstract: The health care sector is totally different from any other industry. It is a high priority sector and consumers expect the highest level of care and services regardless of cost. The health care sector has not achieved society’s expectations, even though the sector consumes a huge percentage of national budgets. Mostly, the interpretations of medical data are analyzed by medical experts. In terms of a medical expert interpreting images, this is quite limited due to its subjectivity and the complexity of the images; extensive variations exist between experts and fatigue sets in due to their heavy workload. Following the success of deep learning in other real-world applications, it is seen as also providing exciting and accurate solutions for medical imaging, and is seen as a key method for future applications in the health care sector. In this chapter, we discuss state-of-the-art deep learning architecture and its optimization when used for medical image segmentation and classification. The chapter closes with a discussion of the challenges of deep learning methods with regard to medical imaging and open research issue.

679 citations

Posted Content
TL;DR: In this paper, state-of-the-art deep learning architecture and its optimization used for medical image segmentation and classification is discussed. And the challenges deep learning based methods for medical imaging and open research issue are discussed.
Abstract: Healthcare sector is totally different from other industry. It is on high priority sector and people expect highest level of care and services regardless of cost. It did not achieve social expectation even though it consume huge percentage of budget. Mostly the interpretations of medical data is being done by medical expert. In terms of image interpretation by human expert, it is quite limited due to its subjectivity, the complexity of the image, extensive variations exist across different interpreters, and fatigue. After the success of deep learning in other real world application, it is also providing exciting solutions with good accuracy for medical imaging and is seen as a key method for future applications in health secotr. In this chapter, we discussed state of the art deep learning architecture and its optimization used for medical image segmentation and classification. In the last section, we have discussed the challenges deep learning based methods for medical imaging and open research issue.

300 citations

Journal ArticleDOI
TL;DR: The proposed framework conducts three studies using three architectures of convolutional neural networks (AlexNet, GoogLeNet, and VGGNet) to classify brain tumors such as meningioma, gliomas, and pituitary and achieves highest accuracy up to 98.69 in terms of classification and detection.
Abstract: Brain tumors are the most destructive disease, leading to a very short life expectancy in their highest grade. The misdiagnosis of brain tumors will result in wrong medical intercession and reduce chance of survival of patients. The accurate diagnosis of brain tumor is a key point to make a proper treatment planning to cure and improve the existence of patients with brain tumors disease. The computer-aided tumor detection systems and convolutional neural networks provided success stories and have made important strides in the field of machine learning. The deep convolutional layers extract important and robust features automatically from the input space as compared to traditional predecessor neural network layers. In the proposed framework, we conduct three studies using three architectures of convolutional neural networks (AlexNet, GoogLeNet, and VGGNet) to classify brain tumors such as meningioma, glioma, and pituitary. Each study then explores the transfer learning techniques, i.e., fine-tune and freeze using MRI slices of brain tumor dataset—Figshare. The data augmentation techniques are applied to the MRI slices for generalization of results, increasing the dataset samples and reducing the chance of over-fitting. In the proposed studies, the fine-tune VGG16 architecture attained highest accuracy up to 98.69 in terms of classification and detection.

277 citations

Journal ArticleDOI
TL;DR: This review introduces disease prevention and its challenges followed by traditional prevention methodologies, and summarizes state-of-the-art data analytics algorithms used for classification of disease, clustering, anomalies detection, and association as well as their respective advantages, drawbacks and guidelines.
Abstract: Medical data is one of the most rewarding and yet most complicated data to analyze. How can healthcare providers use modern data analytics tools and technologies to analyze and create value from complex data? Data analytics, with its promise to efficiently discover valuable pattern by analyzing large amount of unstructured, heterogeneous, non-standard and incomplete healthcare data. It does not only forecast but also helps in decision making and is increasingly noticed as breakthrough in ongoing advancement with the goal is to improve the quality of patient care and reduces the healthcare cost. The aim of this study is to provide a comprehensive and structured overview of extensive research on the advancement of data analytics methods for disease prevention. This review first introduces disease prevention and its challenges followed by traditional prevention methodologies. We summarize state-of-the-art data analytics algorithms used for classification of disease, clustering (unusually high incidence of a particular disease), anomalies detection (detection of disease) and association as well as their respective advantages, drawbacks and guidelines for selection of specific model followed by discussion on recent development and successful application of disease prevention methods. The article concludes with open research challenges and recommendations.

177 citations

Journal ArticleDOI
01 Mar 2014
TL;DR: The Urdu, Pushto, and Sindhi languages are discussed, with the emphasis being on the Nasta'liq and Naskh scripts, with an emphasis on the preprocessing, segmentation, feature extraction, classification, and recognition in OCR.
Abstract: We survey the optical character recognition (OCR) literature with reference to the Urdu-like cursive scripts. In particular, the Urdu, Pushto, and Sindhi languages are discussed, with the emphasis being on the Nasta'liq and Naskh scripts. Before detaining the OCR works, the peculiarities of the Urdu-like scripts are outlined, which are followed by the presentation of the available text image databases. For the sake of clarity, the various attempts are grouped into three parts, namely: (a) printed, (b) handwritten, and (c) online character recognition. Within each part, the works are analyzed par rapport a typical OCR pipeline with an emphasis on the preprocessing, segmentation, feature extraction, classification, and recognition. HighlightsA literature review of the Nasta'liq and Naskh cursive script OCR.The peculiarities and challenges are described a priori.Printed, handwritten and online OCR efforts are being explored.Analyses based on the stages of a typical OCR pipeline.

121 citations


Cited by
More filters
Reference EntryDOI
15 Oct 2004

2,118 citations

Book ChapterDOI
01 Jan 2018
TL;DR: In this paper, the authors discuss state-of-the-art deep learning architecture and its optimization when used for medical image segmentation and classification, and discuss the challenges of deep learning methods with regard to medical imaging and open research issue.
Abstract: The health care sector is totally different from any other industry. It is a high priority sector and consumers expect the highest level of care and services regardless of cost. The health care sector has not achieved society’s expectations, even though the sector consumes a huge percentage of national budgets. Mostly, the interpretations of medical data are analyzed by medical experts. In terms of a medical expert interpreting images, this is quite limited due to its subjectivity and the complexity of the images; extensive variations exist between experts and fatigue sets in due to their heavy workload. Following the success of deep learning in other real-world applications, it is seen as also providing exciting and accurate solutions for medical imaging, and is seen as a key method for future applications in the health care sector. In this chapter, we discuss state-of-the-art deep learning architecture and its optimization when used for medical image segmentation and classification. The chapter closes with a discussion of the challenges of deep learning methods with regard to medical imaging and open research issue.

679 citations

Journal ArticleDOI
TL;DR: This paper is a review that survey recent technologies developed for Big Data and provides not only a global view of main Big Data technologies but also comparisons according to different system layers such as Data Storage Layer, Data Processing Layer, data Querying layer, Data Access Layer and Management Layer.
Abstract: Developing Big Data applications has become increasingly important in the last few years. In fact, several organizations from different sectors depend increasingly on knowledge extracted from huge volumes of data. However, in Big Data context, traditional data techniques and platforms are less efficient. They show a slow responsiveness and lack of scalability, performance and accuracy. To face the complex Big Data challenges, much work has been carried out. As a result, various types of distributions and technologies have been developed. This paper is a review that survey recent technologies developed for Big Data. It aims to help to select and adopt the right combination of different Big Data technologies according to their technological needs and specific applications’ requirements. It provides not only a global view of main Big Data technologies but also comparisons according to different system layers such as Data Storage Layer, Data Processing Layer, Data Querying Layer, Data Access Layer and Management Layer. It categorizes and discusses main technologies features, advantages, limits and usages.

600 citations

Journal ArticleDOI
TL;DR: A comprehensive survey of the major applications of deep learning covering variety of areas is presented, study of the techniques and architectures used and further the contribution of that respective application in the real world are presented.
Abstract: Nowadays, deep learning is a current and a stimulating field of machine learning. Deep learning is the most effective, supervised, time and cost efficient machine learning approach. Deep learning is not a restricted learning approach, but it abides various procedures and topographies which can be applied to an immense speculum of complicated problems. The technique learns the illustrative and differential features in a very stratified way. Deep learning methods have made a significant breakthrough with appreciable performance in a wide variety of applications with useful security tools. It is considered to be the best choice for discovering complex architecture in high-dimensional data by employing back propagation algorithm. As deep learning has made significant advancements and tremendous performance in numerous applications, the widely used domains of deep learning are business, science and government which further includes adaptive testing, biological image classification, computer vision, cancer detection, natural language processing, object detection, face recognition, handwriting recognition, speech recognition, stock market analysis, smart city and many more. This paper focuses on the concepts of deep learning, its basic and advanced architectures, techniques, motivational aspects, characteristics and the limitations. The paper also presents the major differences between the deep learning, classical machine learning and conventional learning approaches and the major challenges ahead. The main intention of this paper is to explore and present chronologically, a comprehensive survey of the major applications of deep learning covering variety of areas, study of the techniques and architectures used and further the contribution of that respective application in the real world. Finally, the paper ends with the conclusion and future aspects.

499 citations

Journal ArticleDOI
TL;DR: The use of long short-term memory recurrent neural network (LSTM-RNN) to accurately forecast the output power of PV systems and offers a further reduction in the forecasting error compared with the other methods.
Abstract: Photovoltaic (PV) is one of the most promising renewable energy sources. To ensure secure operation and economic integration of PV in smart grids, accurate forecasting of PV power is an important issue. In this paper, we propose the use of long short-term memory recurrent neural network (LSTM-RNN) to accurately forecast the output power of PV systems. The LSTM networks can model the temporal changes in PV output power because of their recurrent architecture and memory units. The proposed method is evaluated using hourly datasets of different sites for a year. We compare the proposed method with three PV forecasting methods. The use of LSTM offers a further reduction in the forecasting error compared with the other methods. The proposed forecasting method can be a helpful tool for planning and controlling smart grids.

443 citations