scispace - formally typeset
Search or ask a question
Author

Muhammad Naveed Khan

Bio: Muhammad Naveed Khan is an academic researcher from Quaid-i-Azam University. The author has contributed to research in topics: Nanofluid & Heat transfer. The author has an hindex of 8, co-authored 29 publications receiving 225 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, two distinct nanoparticles are immerged in micropolar fluid to interrogate the feature of heat and mass transfer, and non-dimensional similarity transformation is utilized to transform the partial differential equations into nonlinear ordinary differential equations, and resulting coupled equations are solved numerically using bvp4c from MATLAB.
Abstract: Cattaneo–Christov with variable thermal relaxation time and entropy generation is the main concern of this study. The micropolar fluid with absorption of heat in the existence of mixed convection and partial slip is scrutinized. Two distinct nanoparticles, i.e., single-wall carbon nanotube and multi-wall carbon nanotube, are immerged in micropolar fluid to interrogate the feature of heat and mass transfer. The non-dimensional similarity transformation is utilized to transform the partial differential equations into nonlinear ordinary differential equations, and resulting coupled equations are solved numerically using bvp4c from MATLAB. The present results show the fabulous agreement with previous published results. The temperature field diminishes with larger thermal relaxation time parameter. Entropy generation profile is an increasing function of Brinkmann number, while Bejan number is a diminishing function. Further the solid volume fraction diminishes the velocity profile and enhances the temperature distribution and entropy generation.

96 citations

Journal ArticleDOI
TL;DR: Three dimensional unsteady forced bio-convection flow of a viscous fluid and the value of the wall shear stress and Nusselt number are declined while an enhancement take place in the microorganism number.

53 citations

Journal ArticleDOI
TL;DR: In this paper , the 3D nonlinear mixed convective boundary layer flow of micropolar hybrid nanofluid in the presence of microorganism and multiple slip conditions across the slendering surface is investigated.

47 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigate the rotating Maxwell nanofluid flow with double stratification and activation energy and examine the heat and mass transfer analysis with the influence of variable thermal conductivity and thermophoretic effects.

44 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the induced magnetic field stagnation point flow of carbon nanoliquids influenced by Riga surface with Thomson and Troian slip condition and the effects of emerging parameters on the velocity, temperature and concentration distribution are deliberated graphically.
Abstract: The target of current research is to discuss the induced magnetic field stagnation point flow of carbon nanoliquids influenced by Riga surface with Thomson and Troian slip condition. The heat transfer phenomenon is manipulated over Cattaneo–Christov heat flux model with thermal stratification and heat generation or absorption. The flow model is transferred into nondimensionless form via convenient transformation. The numerical outcome of nonlinear complex equations is made by using bvp4c technique. The effects of emerging parameters on the velocity, temperature and concentration distribution are deliberated graphically. The velocity profile enhances with velocity ratio parameter and modified Hartman number. Further, the solid volume fraction enhances the temperature distribution and Sherwood number.

43 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

01 Jan 2002
TL;DR: In this article, the authors discuss the fluid-dynamic type equations derived from the Boltzmann equation as its asymptotic behavior for small mean free path and the boundary conditions that describe the behavior of the gas in the continuum limit.
Abstract: In this series of talks, I will discuss the fluid-dynamic-type equations that is derived from the Boltzmann equation as its the asymptotic behavior for small mean free path. The study of the relation of the two systems describing the behavior of a gas, the fluid-dynamic system and the Boltzmann system, has a long history and many works have been done. The Hilbert expansion and the Chapman–Enskog expansion are well-known among them. The behavior of a gas in the continuum limit, however, is not so simple as is widely discussed by superficial understanding of these solutions. The correct behavior has to be investigated by classifying the physical situations. The results are largely different depending on the situations. There is an important class of problems for which neither the Euler equations nor the Navier–Stokes give the correct answer. In these two expansions themselves, an initialor boundaryvalue problem is not taken into account. We will discuss the fluid-dynamic-type equations together with the boundary conditions that describe the behavior of the gas in the continuum limit by appropriately classifying the physical situations and taking the boundary condition into account. Here the result for the time-independent case is summarized. The time-dependent case will also be mentioned in the talk. The velocity distribution function approaches a Maxwellian fe, whose parameters depend on the position in the gas, in the continuum limit. The fluid-dynamictype equations that determine the macroscopic variables in the limit differ considerably depending on the character of the Maxwellian. The systems are classified by the size of |fe− fe0|/fe0, where fe0 is the stationary Maxwellian with the representative density and temperature in the gas. (1) |fe − fe0|/fe0 = O(Kn) (Kn : Knudsen number, i.e., Kn = `/L; ` : the reference mean free path. L : the reference length of the system) : S system (the incompressible Navier–Stokes set with the energy equation modified). (1a) |fe − fe0|/fe0 = o(Kn) : Linear system (the Stokes set). (2) |fe − fe0|/fe0 = O(1) with | ∫ ξifedξ|/ ∫ |ξi|fedξ = O(Kn) (ξi : the molecular velocity) : SB system [the temperature T and density ρ in the continuum limit are determined together with the flow velocity vi of the first order of Kn amplified by 1/Kn (the ghost effect), and the thermal stress of the order of (Kn) must be retained in the equations (non-Navier–Stokes effect). The thermal creep[1] in the boundary condition must be taken into account. (3) |fe − fe0|/fe0 = O(1) with | ∫ ξifedξ|/ ∫ |ξi|fedξ = O(1) : E+VB system (the Euler and viscous boundary-layer sets). E system (Euler set) in the case where the boundary is an interface of the gas and its condensed phase. The fluid-dynamic systems are classified in terms of the macroscopic parameters that appear in the boundary condition. Let Tw and δTw be, respectively, the characteristic values of the temperature and its variation of the boundary. Then, the fluid-dynamic systems mentioned above are classified with the nondimensional temperature variation δTw/Tw and Reynolds number Re as shown in Fig. 1. In the region SB, the classical gas dynamics is inapplicable, that is, neither the Euler

501 citations

Journal ArticleDOI
TL;DR: The identity, body of knowledge, safety concerns and antimicrobial resistance of valid taxonomic units were assessed and Lactobacillus animalis was a new taxonomic unit recommended to have the QPS status.
Abstract: Qualified presumption of safety (QPS) was developed to provide a generic safety evaluation for biological agents to support EFSA's Scientific Panels. The taxonomic identity, body of knowledge, safety concerns and antimicrobial resistance are assessed. Safety concerns identified for a taxonomic unit (TU) are where possible to be confirmed at strain or product level, reflected by 'qualifications'. No new information was found that would change the previously recommended QPS TUs and their qualifications. The list of microorganisms notified to EFSA was updated with 54 biological agents, received between April and September 2019; 23 already had QPS status, 14 were excluded from the QPS exercise (7 filamentous fungi, 6 Escherichia coli, Sphingomonas paucimobilis which was already evaluated). Seventeen, corresponding to 16 TUs, were evaluated for possible QPS status, fourteen of these for the first time, and Protaminobacter rubrum, evaluated previously, was excluded because it is not a valid species. Eight TUs are recommended for QPS status. Lactobacillus parafarraginis and Zygosaccharomyces rouxii are recommended to be included in the QPS list. Parageobacillus thermoglucosidasius and Paenibacillus illinoisensis can be recommended for the QPS list with the qualification 'for production purposes only' and absence of toxigenic potential. Bacillus velezensis can be recommended for the QPS list with the qualification 'absence of toxigenic potential and the absence of aminoglycoside production ability'. Cupriavidus necator, Aurantiochytrium limacinum and Tetraselmis chuii can be recommended for the QPS list with the qualification 'production purposes only'. Pantoea ananatis is not recommended for the QPS list due to lack of body of knowledge in relation to its pathogenicity potential for plants. Corynebacterium stationis, Hamamotoa singularis, Rhodococcus aetherivorans and Rhodococcus ruber cannot be recommended for the QPS list due to lack of body of knowledge. Kodamaea ohmeri cannot be recommended for the QPS list due to safety concerns.

347 citations

Journal ArticleDOI
TL;DR: In this article, the effects of cross fluid, microorganisms, and magnetic field on velocity, temperature, and concentration profiles of cross-fluid flow containing gyrotactic microorganisms and nanoparticles on a horizontal and three-dimensional cylinder were investigated.
Abstract: Due to the variation in fluid flow behavior in various physical conditions, the presented study have been performed an investigation of cross-fluid flow containing gyrotactic microorganisms and nanoparticles on a horizontal and three-dimensional cylinder considering viscous dissipation and magnetic field. The governing equations of the problem have been solved by the Runge-Kutta fifth-order method. The aim of this study is to inspect the effects of cross fluid, microorganisms, and magnetic field, on velocity, temperature, and concentration profiles. Also, Heat flux and mass flux values for nanoparticles and microorganisms have been calculated in tabular form. In this research, the simultaneous utilization of nanoparticles with motile microorganisms in cross fluid, and three-dimensional assessment on the cylinder has been proposed as an innovation. The results show that, when the Brownian motion parameter varies from 0.1 to 0.4 and at η = 4 , the concentration of nanoparticle deduces about 80.43%. Furthermore, with the change of bioconvection Lewis number from 0.2 to 0.5, it was observed that the concentration of the microorganisms reduced about 78.38%.

164 citations

Journal ArticleDOI
TL;DR: In this paper, the impact of Cattaneo-Christov model and convective boundary on second-grade nanofluid flow alongside a Riga pattern is investigated.
Abstract: Present communication aims to determine the impact of Cattaneo–Christov model and convective boundary on second-grade nanofluid flow alongside a Riga pattern. Zero mass flux is accounted at the solid surface of Riga pattern such that the fraction of nanoparticles maintains itself on strong retardation. The impact of Lorentz forces generated by Riga pate is also an important aspect of the study. The governing nonlinear problem is converted into ordinary problems via suitably adjusted transformations. Spectral local linearization method has been incorporated to find the solutions of the nonlinear problems. Variation in horizontal movement of the nanofluid, thermal distribution and concentration distribution of the nanoparticles has been noted for various fluid parameters. The results are plotted graphically. Outcomes indicate that the horizontal movement gains enhancement for elevated values of modified Hartman factor. Thermal state of the nanofluid and concentration of nanoparticles receive reduction for incremental values of relaxation time parameters. Numerical results for skin friction and heat flux have been reported in tabular form. The CPU run time and residual error are obtained to check the efficiency of the method used for finding the solution.

109 citations