scispace - formally typeset
Search or ask a question
Author

Muhammad Waqar Aslam

Other affiliations: University of Liverpool
Bio: Muhammad Waqar Aslam is an academic researcher from Mirpur University of Science and Technology. The author has contributed to research in topics: Genetic programming & Energy consumption. The author has an hindex of 10, co-authored 27 publications receiving 664 citations. Previous affiliations of Muhammad Waqar Aslam include University of Liverpool.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper explores the use of Genetic Programming in combination with K-nearest neighbor (KNN) for AMC and demonstrates that the proposed method provides better classification performance compared to other recent methods.
Abstract: Automatic Modulation Classification (AMC) is an intermediate step between signal detection and demodulation. It is a very important process for a receiver that has no, or limited, knowledge of received signals. It is important for many areas such as spectrum management, interference identification and for various other civilian and military applications. This paper explores the use of Genetic Programming (GP) in combination with K-nearest neighbor (KNN) for AMC. KNN has been used to evaluate fitness of GP individuals during the training phase. Additionally, in the testing phase, KNN has been used for deducing the classification performance of the best individual produced by GP. Four modulation types are considered here: BPSK, QPSK, QAM16 and QAM64. Cumulants have been used as input features for GP. The classification process has been divided into two-stages for improving the classification accuracy. Simulation results demonstrate that the proposed method provides better classification performance compared to other recent methods.

263 citations

Journal ArticleDOI
15 Aug 2018-Energy
TL;DR: ANN performs better than all other four techniques with a Mean Absolute Percentage Error (MAPE) of 6% whereas MR, GP, SVM and DNN have MAPE of 8.5%, 8.7%, 9% and 11%, respectively.

133 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed two models, a multiple regression (MR) model and a genetic programming (GP) model, to forecast daily electricity consumption of an administration building located at the Southwark campus of London South Bank University in London.

111 citations

Journal ArticleDOI
TL;DR: The results and their comparisons with other methods demonstrate that the proposed method exhibits superior performance over other recent methods.
Abstract: The ultimate aim of this research is to facilitate the diagnosis of diabetes, a rapidly increasing disease in the world. In this research a genetic programming (GP) based method has been used for diabetes classification. GP has been used to generate new features by making combinations of the existing diabetes features, without prior knowledge of the probability distribution. The proposed method has three stages: features selection is performed at the first stage using t-test, Kolmogorov–Smirnov test, Kullback–Leibler divergence test, F-score selection, and GP. The results of feature selection methods are used to prepare an ordered list of original features where features are arranged in decreasing order of importance. Different subsets of original features are prepared by adding features one by one in each subset using sequential forward selection method according to the ordered list. At the second stage, GP is used to generate new features from each subset of original diabetes features, by making non-linear combinations of the original features. A variation of GP called GP with comparative partner selection (GP-CPS), utilising the strengths and the weaknesses of GP generated features, has been used at the second stage. The performance of GP generated features for classification is tested using the k-nearest neighbor and support vector machine classifiers at the last stage. The results and their comparisons with other methods demonstrate that the proposed method exhibits superior performance over other recent methods.

89 citations

Journal ArticleDOI
12 Oct 2017-Energies
TL;DR: In this paper, the authors presented a forecasting model based on five years of real data sets for one dependent variable (the daily electricity consumption) and six explanatory variables (ambient temperature, solar radiation, relative humidity, wind speed, weekday index and building type).
Abstract: Reliable energy forecasting helps managers to prepare future budgets for their buildings. Therefore, a simple, easier, less time consuming and reliable forecasting model which could be used for different types of buildings is desired. In this paper, we have presented a forecasting model based on five years of real data sets for one dependent variable (the daily electricity consumption) and six explanatory variables (ambient temperature, solar radiation, relative humidity, wind speed, weekday index and building type). A single mathematical equation for forecasting daily electricity usage of university buildings has been developed using the Multiple Regression (MR) technique. Data of two such buildings, located at the Southwark Campus of London South Bank University in London, have been used for this study. The predicted test results of MR model are examined and judged against real electricity consumption data of both buildings for year 2011. The results demonstrate that out of six explanatory variables, three variables; surrounding temperature, weekday index and building type have significant influence on buildings energy consumption. The results of this model are associated with a Normalized Root Mean Square Error (NRMSE) of 12% for the administrative building and 13% for the academic building. Finally, some limitations of this study have also been discussed.

72 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular.
Abstract: The remarkable advances in biotechnology and health sciences have led to a significant production of data, such as high throughput genetic data and clinical information, generated from large Electronic Health Records (EHRs). To this end, application of machine learning and data mining methods in biosciences is presently, more than ever before, vital and indispensable in efforts to transform intelligently all available information into valuable knowledge. Diabetes mellitus (DM) is defined as a group of metabolic disorders exerting significant pressure on human health worldwide. Extensive research in all aspects of diabetes (diagnosis, etiopathophysiology, therapy, etc.) has led to the generation of huge amounts of data. The aim of the present study is to conduct a systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular. A wide range of machine learning algorithms were employed. In general, 85% of those used were characterized by supervised learning approaches and 15% by unsupervised ones, and more specifically, association rules. Support vector machines (SVM) arise as the most successful and widely used algorithm. Concerning the type of data, clinical datasets were mainly used. The title applications in the selected articles project the usefulness of extracting valuable knowledge leading to new hypotheses targeting deeper understanding and further investigation in DM.

811 citations

Journal ArticleDOI
01 Sep 2019-Energy
TL;DR: This paper proposes a CNN-LSTM neural network that can extract spatial and temporal features to effectively predict the housing energy consumption and achieves almost perfect prediction performance for electric energy consumption that was previously difficult to predict.

677 citations

Journal ArticleDOI
TL;DR: A review of studies developing data-driven models for building scale applications with a focus on the input data characteristics and data pre-processing methods, the building typologies considered, the targeted energy end-uses and forecasting horizons, and accuracy assessment.

422 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning and investigate their employment in the compelling applications of wireless networks, including heterogeneous networks, cognitive radios (CR), Internet of Things (IoT), machine to machine networks (M2M), and so on.
Abstract: Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of Things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.

413 citations

Journal ArticleDOI
TL;DR: This paper develops several methods to represent modulated signals in data formats with gridlike topologies for the CNN and demonstrates the significant performance advantage and application feasibility of the DL-based approach for modulation classification.
Abstract: Deep learning (DL) is a new machine learning (ML) methodology that has found successful implementations in many application domains. However, its usage in communications systems has not been well explored. This paper investigates the use of the DL in modulation classification, which is a major task in many communications systems. The DL relies on a massive amount of data and, for research and applications, this can be easily available in communications systems. Furthermore, unlike the ML, the DL has the advantage of not requiring manual feature selections, which significantly reduces the task complexity in modulation classification. In this paper, we use two convolutional neural network (CNN)-based DL models, AlexNet and GoogLeNet. Specifically, we develop several methods to represent modulated signals in data formats with gridlike topologies for the CNN. The impacts of representation on classification performance are also analyzed. In addition, comparisons with traditional cumulant and ML-based algorithms are presented. Experimental results demonstrate the significant performance advantage and application feasibility of the DL-based approach for modulation classification.

355 citations