scispace - formally typeset
Search or ask a question
Author

Munir Cheryan

Other affiliations: Purdue University, King Saud University, Urbana University  ...read more
Bio: Munir Cheryan is an academic researcher from University of Illinois at Urbana–Champaign. The author has contributed to research in topics: Ultrafiltration & Membrane. The author has an hindex of 49, co-authored 161 publications receiving 11094 citations. Previous affiliations of Munir Cheryan include Purdue University & King Saud University.


Papers
More filters
Book
01 Jan 1998
TL;DR: In this paper, the authors define and classify membrane separation processes, including phase-inversion process of membrane separations, chemical potential and osmosis, Vapor pressure, Osmotic pressure and chemical potential of membrane separation.
Abstract: Each chapter ends with a section of references. Introduction Definition and classification of membrane separation processes Historical developments Physical chemistry of membrane separations: Chemical potential and osmosis, Vapor pressure, Osmotic pressure and chemical potential Membrane Chemistry Definitions and classification: Depth vs. screen filters, Microporous vs. asymmetric membranes General methods of membrane manufacture: Phase Inversion Process of Membrane Manufacture Polymers used in membrane manufacture: Cellulose Acetate, Polyamide membranes, Polysulfone membranes, Other polymeric materials Composite membranes Inorganic membranes: Properties of inorganic membranes Membrane Properties Pore size: Bubble point and pressure techniques, Direct microscopic observation Predicting flux from pore statistics Passage (challenge) tests: Microfiltration membranes, Ultrafiltration membranes Factors affecting retentivity of membranes: Size of the molecule, Shape of the molecule, Membrane material, Presence of other solutes, Operating parameters, Lot-to-lot variability, Membrane configuration, Fouling and adsorption effects, The microenvironment Performance and Engineering Models The velocity boundary layer The concentration boundary layer Models for predicting flux: the pressure-controlled region Concentration polarization Mass transfer (film theory) model: Determining the mass transfer coefficient, Example The resistance model Osmotic pressure model for limiting flux Factors affecting flux: operating parameters: Feed concentration, Temperature, Flow rate and turbulence Physical properties of liquid streams: Density, Viscosity, Diffusion coefficients Experiment vs. theory: the "flux paradox" Design factors affecting flux Equipment Laboratory scale devices Industrial equipment: Tubular modules, Hollow fibers, Plate units, Spiral-wound Special modules: Rotary modules, Vibrating modules, Dean Vortices Summary Fouling and Cleaning Characteristics of fouling: Water flux Consequences of fouling Mathematical models of fouling Factors affecting fouling: Membrane properties, Solute properties, Process engineering factors affecting fouling Flux enhancement: Turbulence promoters/inserts/baffles, Back-flushing, -pulsing, -shocking and washing, Uniform transmembrane pressure/co-current permeate flow, Permeate back-pressure, Intermittent jets, Pulsatile flow, Electrical methods Summary: Membrane Fouling Cleaning membranes: Important factors during cleaning, Typical foulants and soils, Cleaning chemicals, Sanitizers Process Design Physics of the ultrafiltration process: Example Modes of operation: Discontinuous diafiltration (DD), Continuous diafiltration (CD), Dialysis ultrafiltration Batch vs. continuous operation: Batch operation, Single pass, Feed-and-bleed, Multistage operations, Example, Control methods Minimum process time Fractionation of macromolecules Energy requirements: Example Cost and process economics: Arrays and configurations, System cost Summary Applications Electrocoat paint The dairy industry: Fluid milk and fermented products, Cheese manufacture, Milk microfiltration, Cheese whey ultrafiltration, Microfiltration of whey Water treatment Wastewaters: Oily wastewater, Stillage from bioethanol plants, Caustic and acid recovery, Brine recovery, Printing ink, Laundry wastewater, Micellar-enhanced ultrafiltration Textile industry Latex emulsions Pulp and paper industry Tanning and leather industries Sugar refining Soybean and other vegetable proteins Vegetable oils: Degumming, Deacidification, Bleaching, Removal of metals, Dewaxing, Clarifying Frying Oils Corn and other grains: Dextrose clarification, Protein processing Animal products: Red meat, Gelatin, Egg processing, Fish processing, Poultry industry Biotechnology applications: Separation and harvesting of microbial cells, Enzyme recovery, Affinity ultrafiltration, Membrane bioreactors Fruit juices and extracts Alcoholic beverages: Wine, Beer Appendices List of manufacturers of membrane equipment Conversion factors Books and general Glossary of terms Index More than 350 Tables and Figures Useful reference data is provided in 85 tables. Numerous schematics illustrate membranes, modules, equipment, and processes. Micrographs illustrate membranes and filtration. Here is a small sampling of this supplementary material. * Tables: Characteristics of membrane processes Comparison of energy requirements and costs between evaporation and membrane processes Methods of manufacture of synthetic membranes Materials used for the manufacture of membranes Properties of membrane filters requiring standardization Morphological parameters and bubble points for selected MF membranes-Pore size and surface porosity of ultrafiltration membranes Selected values of gel concentration-Diffusion coefficients-Relationship between channel size and surface area:volume ratio of membrane modules Hollow fibers from various manufacturers-Specifications of spiral-wound membranes from various manufacturers-Typical cleaning reagents and their modes of action-Operating economy of UF plants processing whole milk for cheese manufacture-Water purification process comparison Examples of affinity ultrafiltration Figures: Useful ranges of various separation processes-Classification of filters-Micrograph of multistage depth filter-Schematic representation of ultrastructure of an asymmetric (skinned) membrane-Typical structures of polyamide membranes-Comparison of the performance of commercial cellulose acetate and thin-film composite (polyamide) membranes-Ceramic membrane modules in their housing-Relationship between pore size, molecular weight of ideal solutes, and ratings of ideal and real membranes Permeability of large and small molecules through large and small pore membranes-Schematic representation of the cross section of typical asymmetric UF or MF membrane-Schematic of concentration polarization during UF of colloidal and macromolecular solutes . . .-Schematic of typical plate type membrane module-Multistage filtration sowing several feed-and-bleed systems connected in series-Membrane processing of cheese whey-Selection criteria of separation methods in biopro- cessing

1,679 citations

Journal ArticleDOI
TL;DR: A review of the present status of the chemistry, properties, uses and methods of manufacturing zein can be found in this article, where the characteristics of zein are discussed in terms of its composition, structure, solubility in various solvents and gelation properties.

1,225 citations

Journal ArticleDOI
TL;DR: Development of methods for producing low-phytate food products must take into account the nature and extent of the interactions between phytic acid and other food components, such as pH-solubility profiles of the proteins and the cookability of the seeds.
Abstract: Phytic acid is present in many plant systems, constituting about 1 to 5% by weight of many cereals and legumes. Concern about its presence in food arises from evidence that it decreases the bioavailability of many essential minerals by interacting with multivalent cations and/or proteins to form complexes that may be insoluble or otherwise unavailable under physiologic conditions. The precise structure of phytic acid and its salts is still a matter of controversy and lack of a good method of analysis is also a problem. It forms fairly stable chelates with almost all multivalent cations which are insoluble above pH 6 to 7, although pH, type, and concentration of cation have a tremendous influence on their solubility characteristics. In addition, at low pH and low cation concentration, phytate‐protein complexes are formed due to direct electrostatic interaction, while at pH >6 to 7, a ternary phytic acid‐mineral‐protein complex is formed which dissociates at high Na concentrations. These complexes appear to...

909 citations

Journal ArticleDOI
TL;DR: In this paper, the authors showed that the conversion of triglycerides (TG), diglycerides (DG), and monoglycerides (MG) appeared to be second order up to 30 min of reaction time.
Abstract: Methyl esters were produced by transesterification of palm oil with methanol in the presence of a catalyst (KOH). The rate of transesterification in a batch reactor increased with temperature up to 60°C. Higher temperatures did not reduce the time to reach maximal conversion. The conversion of triglycerides (TG), diglycerides (DG), and monoglycerides (MG) appeared to be second order up to 30 min of reaction time. Reaction rate constants for TG, DG, and MG hydrolysis reactions were 0.018–0.191 (wt%·min)−1, and were higher at higher temperatures and higher for the MG reaction than for TG hydrolysis. Activation energies were 14.7, 14.2, and 6.4 kcal/mol for the TG, DG, and MG hydrolysis reactions, respectively. The optimal catalyst concentration was 1% KOH.

746 citations

Journal ArticleDOI
TL;DR: The use of membranes to treat oil-water emulsions is increasing, especially in applications where the value of the recovered materials is high, e.g., recycling aqueous cleaners and machining coolants.

676 citations


Cited by
More filters
Book
16 Dec 1999
TL;DR: Overview of membrane science and technology membrane transport theory membrane and modules concentration polarization reverse osmosis ultrafiltration microfiltration gas separation pervaporation ion exchange membrane processes - electrodialysis carrier facilitated transport medical applications of membranes other membranes processed.
Abstract: Overview of membrane science and technology membrane transport theory membrane and modules concentration polarization reverse osmosis ultrafiltration microfiltration gas separation pervaporation ion exchange membrane processes - electrodialysis carrier facilitated transport medical applications of membranes other membranes processed.

3,680 citations

Journal ArticleDOI
TL;DR: In this paper, various methods of preparation of biodiesel with different combination of oil and catalysts have been described and technical tools and processes for monitoring the transesterification reactions like TLC, GC, HPLC, GPC, 1H NMR and NIR have also been summarized.
Abstract: Biodiesel is gaining more and more importance as an attractive fuel due to the depleting fossil fuel resources. Chemically biodiesel is monoalkyl esters of long chain fatty acids derived from renewable feed stock like vegetable oils and animal fats. It is produced by transesterification in which, oil or fat is reacted with a monohydric alcohol in presence of a catalyst. The process of transesterification is affected by the mode of reaction condition, molar ratio of alcohol to oil, type of alcohol, type and amount of catalysts, reaction time and temperature and purity of reactants. In the present paper various methods of preparation of biodiesel with different combination of oil and catalysts have been described. The technical tools and processes for monitoring the transesterification reactions like TLC, GC, HPLC, GPC, 1H NMR and NIR have also been summarized. In addition, fuel properties and specifications provided by different countries are discussed.

3,232 citations

Journal ArticleDOI
TL;DR: An up-to-date review of the literature available on the subject of liquid bio-fuels can be found in this article, which includes information based on the research conducted globally by scientists according to their local socio-cultural and economic situations.

1,948 citations

Journal ArticleDOI
TL;DR: In this article, molecular-level design approaches for membrane materials, focusing on how these materials address the urgent requirements of water treatment applications, are reviewed for water scarcity and the pollution of aquatic environments.
Abstract: Membranes have an increasingly important role in alleviating water scarcity and the pollution of aquatic environments. Promising molecular-level design approaches are reviewed for membrane materials, focusing on how these materials address the urgent requirements of water treatment applications.

1,900 citations

Journal ArticleDOI
TL;DR: The most important variables affecting methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil and the reaction temperature as discussed by the authors, which is the commonly used alcohol in this process, due to its low cost.

1,798 citations