Author
Munuswamy Venkatesan
Other affiliations: University College Dublin, College of Engineering, Guindy, University of Ioannina ...read more
Bio: Munuswamy Venkatesan is an academic researcher from Trinity College, Dublin. The author has contributed to research in topics: Magnetization & Ferromagnetism. The author has an hindex of 38, co-authored 170 publications receiving 10354 citations. Previous affiliations of Munuswamy Venkatesan include University College Dublin & College of Engineering, Guindy.
Topics: Magnetization, Ferromagnetism, Coercivity, Curie temperature, Magnetism
Papers published on a yearly basis
Papers
More filters
TL;DR: It is proposed thatferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band.
Abstract: Dilute ferromagnetic oxides having Curie temperatures far in excess of 300 K and exceptionally large ordered moments per transition-metal cation challenge our understanding of magnetism in solids. These materials are high-k dielectrics with degenerate or thermally activated n-type semiconductivity. Conventional super-exchange or double-exchange interactions cannot produce long-range magnetic order at concentrations of magnetic cations of a few percent. We propose that ferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band. The Curie temperature in the mean-field approximation varies as (xdelta)(1/2) where x and delta are the concentrations of magnetic cations and donors, respectively. High Curie temperatures arise only when empty minority-spin or majority-spin d states lie at the Fermi level in the impurity band. The magnetic phase diagram includes regions of semiconducting and metallic ferromagnetism, cluster paramagnetism, spin glass and canted antiferromagnetism.
2,743 citations
TL;DR: It is shown that thin films of hafnium dioxide (HfO2), an insulating oxide better known as a dielectric layer for nanoscale electronic devices, can be ferromagnetic even without doping.
Abstract: It is generally accepted that magnetic order in an insulator requires the cation to have partially filled shells of d or f electrons. Here we show that thin films of hafnium dioxide (HfO2), an insulating oxide better known as a dielectric layer for nanoscale electronic devices, can be ferromagnetic even without doping. This discovery challenges our understanding of magnetism in insulators, because neither Hf4+ nor O2- are magnetic ions and the d and f shells of the Hf4+ ion are either empty or full.
1,046 citations
TL;DR: Results are interpreted in terms of a spin-split donor impurity-band model, which can account for ferromagnetism in insulating or conducting high-k oxides with concentrations of magnetic ions that lie far below the percolation threshold.
Abstract: Room-temperature ferromagnetism is observed in (110) oriented ZnO films made from targets containing 5 at. % of Sc, Ti, V, Fe, Co, or Ni, but not Cr, Mn, or Cu ions. There are large moments, $2.6{\ensuremath{\mu}}_{B}$ and $0.5{\ensuremath{\mu}}_{B}/\mathrm{\text{dopant atom}}$ for Co- and Ti-containing oxides, respectively. There is also a moment of $0.3{\ensuremath{\mu}}_{B}/\mathrm{S}\mathrm{c}$. Magnetization is very anisotropic, with variations of up to a factor of 3 depending on the orientation of the applied field relative to the substrate. Results are interpreted in terms of a spin-split donor impurity-band model, which can account for ferromagnetism in insulating or conducting high-$k$ oxides with concentrations of magnetic ions that lie far below the percolation threshold. Magnetic moments are associated with two-electron defects in the films as well as unpaired electrons of the $3d$ ions.
979 citations
TL;DR: In this article, Ferromagnetic coupling of ferric ions via an electron trapped in a bridging oxygen vacancy (F center) is proposed to explain the high Curie temperature.
Abstract: Thin films grown by pulsed-laser deposition from targets of Sn0.95Fe0.05O2 are transparent ferromagnets with Curie temperature and spontaneous magnetization of 610 K and 2.2 A m2 kg−1, respectively. The 57Fe Mossbauer spectra show the iron is all high-spin Fe3+ but the films are magnetically inhomogeneous on an atomic scale, with only 23% of the iron ordering magnetically. The net ferromagnetic moment per ordered iron ion, 1.8 μB, is greater than for any simple iron oxide with superexchange interactions. Ferromagnetic coupling of ferric ions via an electron trapped in a bridging oxygen vacancy (F center) is proposed to explain the high Curie temperature.
868 citations
TL;DR: In terms of substrate area it is typically in the range $150--400\phantom{\rule{0.3em}{0ex}}{\ensuremath{\mu}}_{\mathrm{B}}\phanthem{nm}}^{-}2} as discussed by the authors.
Abstract: Thin films of ${\mathrm{HfO}}_{2}$ produced by pulsed-laser deposition on sapphire, yttria-stabilized zirconia, or silicon substrates show ferromagnetic magnetization curves with little hysteresis and extrapolated Curie temperatures far in excess of $400\phantom{\rule{0.3em}{0ex}}\mathrm{K}$. The moment does not scale with film thickness, but in terms of substrate area it is typically in the range $150--400\phantom{\rule{0.3em}{0ex}}{\ensuremath{\mu}}_{\mathrm{B}}\phantom{\rule{0.2em}{0ex}}{\mathrm{nm}}^{\ensuremath{-}2}$. The magnetization exhibits a remarkable anisotropy, which depends on texture and substrate orientation. Pure ${\mathrm{HfO}}_{2}$ powder develops a weak magnetic moment on heating in vacuum, which is eliminated on annealing in oxygen. Lattice defects are the likely source of the magnetism.
399 citations
Cited by
More filters
TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Abstract: This article reviews the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations. The Dirac electrons can be controlled by application of external electric and magnetic fields, or by altering sample geometry and/or topology. The Dirac electrons behave in unusual ways in tunneling, confinement, and the integer quantum Hall effect. The electronic properties of graphene stacks are discussed and vary with stacking order and number of layers. Edge (surface) states in graphene depend on the edge termination (zigzag or armchair) and affect the physical properties of nanoribbons. Different types of disorder modify the Dirac equation leading to unusual spectroscopic and transport properties. The effects of electron-electron and electron-phonon interactions in single layer and multilayer graphene are also presented.
20,824 citations
TL;DR: It is proposed thatferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band.
Abstract: Dilute ferromagnetic oxides having Curie temperatures far in excess of 300 K and exceptionally large ordered moments per transition-metal cation challenge our understanding of magnetism in solids. These materials are high-k dielectrics with degenerate or thermally activated n-type semiconductivity. Conventional super-exchange or double-exchange interactions cannot produce long-range magnetic order at concentrations of magnetic cations of a few percent. We propose that ferromagnetic exchange here, and in dilute ferromagnetic nitrides, is mediated by shallow donor electrons that form bound magnetic polarons, which overlap to create a spin-split impurity band. The Curie temperature in the mean-field approximation varies as (xdelta)(1/2) where x and delta are the concentrations of magnetic cations and donors, respectively. High Curie temperatures arise only when empty minority-spin or majority-spin d states lie at the Fermi level in the impurity band. The magnetic phase diagram includes regions of semiconducting and metallic ferromagnetism, cluster paramagnetism, spin glass and canted antiferromagnetism.
2,743 citations
TL;DR: A review of surface science studies of single crystal surfaces, but selected studies on powder and polycrystalline films are also incorporated in order to provide connecting points between surface sciences studies with the broader field of materials science of tin oxide as discussed by the authors.
Abstract: The study of tin oxide is motivated by its applications as a solid state gas sensor material, oxidation catalyst, and transparent conductor. This review describes the physical and chemical properties that make tin oxide a suitable material for these purposes. The emphasis is on surface science studies of single crystal surfaces, but selected studies on powder and polycrystalline films are also incorporated in order to provide connecting points between surface science studies with the broader field of materials science of tin oxide. The key for understanding many aspects of SnO 2 surface properties is the dual valency of Sn. The dual valency facilitates a reversible transformation of the surface composition from stoichiometric surfaces with Sn 4+ surface cations into a reduced surface with Sn 2+ surface cations depending on the oxygen chemical potential of the system. Reduction of the surface modifies the surface electronic structure by formation of Sn 5s derived surface states that lie deep within the band gap and also cause a lowering of the work function. The gas sensing mechanism appears, however, only to be indirectly influenced by the surface composition of SnO 2 . Critical for triggering a gas response are not the lattice oxygen concentration but chemisorbed (or ionosorbed) oxygen and other molecules with a net electric charge. Band bending induced by charged molecules cause the increase or decrease in surface conductivity responsible for the gas response signal. In most applications tin oxide is modified by additives to either increase the charge carrier concentration by donor atoms, or to increase the gas sensitivity or the catalytic activity by metal additives. Some of the basic concepts by which additives modify the gas sensing and catalytic properties of SnO 2 are discussed and the few surface science studies of doped SnO 2 are reviewed. Epitaxial SnO 2 films may facilitate the surface science studies of doped films in the future. To this end film growth on titania, alumina, and Pt(1 1 1) is reviewed. Thin films on alumina also make promising test systems for probing gas sensing behavior. Molecular adsorption and reaction studies on SnO 2 surfaces have been hampered by the challenges of preparing well-characterized surfaces. Nevertheless some experimental and theoretical studies have been performed and are reviewed. Of particular interest in these studies was the influence of the surface composition on its chemical properties. Finally, the variety of recently synthesized tin oxide nanoscopic materials is summarized.
2,232 citations
IBM1
TL;DR: Heusler compounds as discussed by the authors are a remarkable class of intermetallic materials with 1:1:1 or 2:1-1 composition comprising more than 1500 members, and their properties can easily be predicted by the valence electron count.
Abstract: Heusler compounds are a remarkable class of intermetallic materials with 1:1:1 (often called Half-Heusler) or 2:1:1 composition comprising more than 1500 members. Today, more than a century after their discovery by Fritz Heusler, they are still a field of active research. New properties and potential fields of applications emerge constantly; the prediction of topological insulators is the most recent example. Surprisingly, the properties of many Heusler compounds can easily be predicted by the valence electron count. Their extremely flexible electronic structure offers a toolbox which allows the realization of demanded but apparently contradictory functionalities within one ternary compound. Devices based on multifunctional properties, i.e. the combination of two or more functions such as superconductivity and topological edge states will revolutionize technological applications. The subgroup of more than 250 semiconductors is of high relevance for the development of novel materials for energy technologies. Their band gaps can readily be tuned from zero to ≈4 eV by changing the chemical composition. Thus, great interest has been attracted in the fields of thermoelectrics and solar cell research. The wide range of their multifunctional properties is also reflected in extraordinary magneto-optical, magnetoelectronic, and magnetocaloric properties. The most prominent example is the combination of magnetism and exceptional transport properties in spintronic devices. To take advantage of the extremely high potential of Heusler compounds simple rules for the understanding of the structure, the electronic structure and the relation to the properties are reviewed.
1,675 citations
TL;DR: The introduction of magnetic nanoparticles in a variety of solid matrices allows the combination of well-known procedures for catalyst heterogenization with techniques for magnetic separation.
Abstract: Recovery and reuse of expensive catalysts after catalytic reactions are important factors for sustainable process management. The aim of this Review is to highlight the progress in the formation and catalytic applications of magnetic nanoparticles and magnetic nanocomposites. Directed functionalization of the surfaces of nanosized magnetic materials is an elegant way to bridge the gap between heterogeneous and homogeneous catalysis. The introduction of magnetic nanoparticles in a variety of solid matrices allows the combination of well-known procedures for catalyst heterogenization with techniques for magnetic separation.
1,303 citations