scispace - formally typeset
Search or ask a question
Author

Muralidhar Ambati

Bio: Muralidhar Ambati is an academic researcher from University of California, Berkeley. The author has contributed to research in topics: Surface plasmon & Metamaterial. The author has an hindex of 8, co-authored 10 publications receiving 2278 citations. Previous affiliations of Muralidhar Ambati include University of California, Los Angeles.

Papers
More filters
Journal ArticleDOI
TL;DR: A new class of ultrasonic metamaterials consisting of an array of subwavelength Helmholtz resonators with designed acoustic inductance and capacitance with an effective dynamic modulus with negative values near the resonance frequency is reported.
Abstract: The emergence of artificially designed subwavelength electromagnetic materials, denoted metamaterials, has significantly broadened the range of material responses found in nature. However, the acoustic analogue to electromagnetic metamaterials has, so far, not been investigated. We report a new class of ultrasonic metamaterials consisting of an array of subwavelength Helmholtz resonators with designed acoustic inductance and capacitance. These materials have an effective dynamic modulus with negative values near the resonance frequency. As a result, these ultrasonic metamaterials can convey acoustic waves with a group velocity antiparallel to phase velocity, as observed experimentally. On the basis of homogenized-media theory, we calculated the dispersion and transmission, which agrees well with experiments near 30 kHz. As the negative dynamic modulus leads to a richness of surface states with very large wavevectors, this new class of acoustic metamaterials may offer interesting applications, such as acoustic negative refraction and superlensing below the diffraction limit.

1,562 citations

Journal ArticleDOI
TL;DR: In this paper, a method to extract effective material properties from reflection and transmission coefficients, which can be measured experimentally, is presented, and the dependency of effective properties on the positions of the boundaries of the acoustic metamaterial is discussed.
Abstract: Acoustic metamaterials can be described by effective material properties such as mass density and modulus. We have developed a method to extract these effective properties from reflection and transmission coefficients, which can be measured experimentally. The dependency of effective properties on the positions of the boundaries of the acoustic metamaterial is discussed, and a proper procedure to determine the boundaries is presented. This retrieval method is used to analyze various acoustic metamaterials, and metamaterials with negative effective properties are reported.

394 citations

Journal ArticleDOI
TL;DR: In this article, negative effective mass density is determined to be the necessary condition for the existence of surface states on acoustic metamaterials, and the microscopic picture of these unique surface states is presented.
Abstract: We report that the negative material responses of acoustic metamaterials can lead to a plethora of surface resonant states. We determine that negative effective-mass density is the necessary condition for the existence of surface states on acoustic metamaterials. We offer the microscopic picture of these unique surface states; in addition, we find that these surface excitations enhance the transmission of evanescent pressure fields across the metamaterial. The evanescent pressure fields scattered from an object can be resonantly coupled and enhanced at the surface of the acoustic metamaterial, resulting in an image with resolution below the diffraction limit. This concept of acoustic superlens opens exciting opportunities to design acoustic metamaterials for ultrasonic imaging.

213 citations

Journal ArticleDOI
TL;DR: The design, fabrication, and characterization of SPP waveguides, thin gold metal strips, embedded in erbium (Er) doped phosphate glass is presented, which can be suitable as integrated devices coupling electronic and photonic data transmissions as well as SPP amplifiers and SPP lasers.
Abstract: We report a direct experimental evidence of stimulated emission of surface plasmon polaritons (SPPs) at telecom wavelengths (1532 nm) with erbium doped glass as a gain medium. We observe an increase in the propagation length of signal surface plasmons when erbium ions are excited optically using pump SPP. The design, fabrication, and characterization of SPP waveguides, thin gold metal strips, embedded in erbium (Er) doped phosphate glass is presented. Such systems can be suitable as integrated devices coupling electronic and photonic data transmissions as well as SPP amplifiers and SPP lasers.

176 citations

Journal ArticleDOI
TL;DR: Fang et al. as discussed by the authors used a thin silver slab for superlensing and obtained an image of a 50 nm half-pitch object at λ 0/7 resolution, which is well below the diffraction limit.
Abstract: Recently, the concept of superlensing has received considerable attention for its unique ability to produce images below the diffraction limit. The theoretical study has predicted a 'superlens' made of materials with negative permittivity and/or permeability, is capable of resolving features much smaller than the working wavelength and a near-perfect image can be obtained through the restoration of lost evanescent waves (Pendry 2000 Phys. Rev. Lett. 85 3966–9). We have already demonstrated that a 60 nm half-pitch object can indeed be resolved with λ0/6 resolution with the implementation of a silver superlens with λ0 = 365 nm illumination wavelength, which is well below the diffraction limit (Fang et al 2005 Science 308 534–7). In order to further support the imaging ability of our silver superlens, a two-dimensional arbitrary object with 40 nm line width was also imaged (Fang et al 2005 Science 308 534–7). In this paper, we present experimental and theoretical investigations of optical superlensing through a thin silver slab. Experimental design and procedures as well as theoretical studies are presented in detail. In addition, a new superlens imaging result is presented which shows the image of a 50 nm half-pitch object at λ0/7 resolution.

131 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors summarized the basic principles and major achievements of plasmon guiding, and details the current state-of-the-art in subwavelength PLASmonic waveguides, passive and active nanoplasmonic components for the generation, manipulation and detection of radiation, and configurations for the nanofocusing of light.
Abstract: Recent years have seen a rapid expansion of research into nanophotonics based on surface plasmon–polaritons. These electromagnetic waves propagate along metal–dielectric interfaces and can be guided by metallic nanostructures beyond the diffraction limit. This remarkable capability has unique prospects for the design of highly integrated photonic signal-processing systems, nanoresolution optical imaging techniques and sensors. This Review summarizes the basic principles and major achievements of plasmon guiding, and details the current state-of-the-art in subwavelength plasmonic waveguides, passive and active nanoplasmonic components for the generation, manipulation and detection of radiation, and configurations for the nanofocusing of light. Potential future developments and applications of nanophotonic devices and circuits are also discussed, such as in optical signals processing, nanoscale optical devices and near-field microscopy with nanoscale resolution.

3,481 citations

Journal ArticleDOI
TL;DR: In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision through a strong interaction between incident light and free electrons in the nanostructure.
Abstract: Coinage metals, such as Au, Ag, and Cu, have been important materials throughout history.1 While in ancient cultures they were admired primarily for their ability to reflect light, their applications have become far more sophisticated with our increased understanding and control of the atomic world. Today, these metals are widely used in electronics, catalysis, and as structural materials, but when they are fashioned into structures with nanometer-sized dimensions, they also become enablers for a completely different set of applications that involve light. These new applications go far beyond merely reflecting light, and have renewed our interest in maneuvering the interactions between metals and light in a field known as plasmonics.2–6 In plasmonics, the metal nanostructures can serve as antennas to convert light into localized electric fields (E-fields) or as waveguides to route light to desired locations with nanometer precision. These applications are made possible through a strong interaction between incident light and free electrons in the nanostructures. With a tight control over the nanostructures in terms of size and shape, light can be effectively manipulated and controlled with unprecedented accuracy.3,7 While many new technologies stand to be realized from plasmonics, with notable examples including superlenses,8 invisible cloaks,9 and quantum computing,10,11 conventional technologies like microprocessors and photovoltaic devices could also be made significantly faster and more efficient with the integration of plasmonic nanostructures.12–15 Of the metals, Ag has probably played the most important role in the development of plasmonics, and its unique properties make it well-suited for most of the next-generation plasmonic technologies.16–18 1.1. What is Plasmonics? Plasmonics is related to the localization, guiding, and manipulation of electromagnetic waves beyond the diffraction limit and down to the nanometer length scale.4,6 The key component of plasmonics is a metal, because it supports surface plasmon polariton modes (indicated as surface plasmons or SPs throughout this review), which are electromagnetic waves coupled to the collective oscillations of free electrons in the metal. While there are a rich variety of plasmonic metal nanostructures, they can be differentiated based on the plasmonic modes they support: localized surface plasmons (LSPs) or propagating surface plasmons (PSPs).5,19 In LSPs, the time-varying electric field associated with the light (Eo) exerts a force on the gas of negatively charged electrons in the conduction band of the metal and drives them to oscillate collectively. At a certain excitation frequency (w), this oscillation will be in resonance with the incident light, resulting in a strong oscillation of the surface electrons, commonly known as a localized surface plasmon resonance (LSPR) mode.20 This phenomenon is illustrated in Figure 1A. Structures that support LSPRs experience a uniform Eo when excited by light as their dimensions are much smaller than the wavelength of the light. Figure 1 Schematic illustration of the two types of plasmonic nanostructures discussed in this article as excited by the electric field (Eo) of incident light with wavevector (k). In (A) the nanostructure is smaller than the wavelength of light and the free electrons ... In contrast, PSPs are supported by structures that have at least one dimension that approaches the excitation wavelength, as shown in Figure 1B.4 In this case, the Eo is not uniform across the structure and other effects must be considered. In such a structure, like a nanowire for example, SPs propagate back and forth between the ends of the structure. This can be described as a Fabry-Perot resonator with resonance condition l=nλsp, where l is the length of the nanowire, n is an integer, and λsp is the wavelength of the PSP mode.21,22 Reflection from the ends of the structure must also be considered, which can change the phase and resonant length. Propagation lengths can be in the tens of micrometers (for nanowires) and the PSP waves can be manipulated by controlling the geometrical parameters of the structure.23

2,421 citations

PatentDOI
03 Nov 2012-Nature
TL;DR: Hybrid plasmonic waveguides as discussed by the authors employ a high-gain semiconductor nanostructure functioning as a gain medium that is separated from a metal substrate surface by a nanoscale thickness thick low-index gap.
Abstract: Hybrid plasmonic waveguides are described that employ a high-gain semiconductor nanostructure functioning as a gain medium that is separated from a metal substrate surface by a nanoscale thickness thick low-index gap. The waveguides are capable of efficient generation of sub-wavelength high intensity light and have the potential for large modulation bandwidth >1 THz.

2,060 citations

Journal ArticleDOI
TL;DR: In this article, a hybrid optical waveguide is proposed to confine surface plasmon polaritons over large distances using a dielectric nanowire separated from a metal surface by a nanoscale gap.
Abstract: The emerging field of nanophotonics1 addresses the critical challenge of manipulating light on scales much smaller than the wavelength. However, very few feasible practical approaches exist at present. Surface plasmon polaritons2,3 are among the most promising candidates for subwavelength optical confinement3,4,5,6,7,8,9,10. However, studies of long-range surface plasmon polaritons have only demonstrated optical confinement comparable to that of conventional dielectric waveguides, because of practical issues including optical losses and stringent fabrication demands3,11,12,13. Here, we propose a new approach that integrates dielectric waveguiding with plasmonics. The hybrid optical waveguide consists of a dielectric nanowire separated from a metal surface by a nanoscale dielectric gap. The coupling between the plasmonic and waveguide modes across the gap enables ‘capacitor-like’ energy storage that allows effective subwavelength transmission in non-metallic regions. In this way, surface plasmon polaritons can travel over large distances (40–150 µm) with strong mode confinement (ranging from λ2/400 to λ2/40). This approach is fully compatible with semiconductor fabrication techniques and could lead to truly nanoscale semiconductor-based plasmonics and photonics. Xiang Zhang and colleagues from the University of California, Berkeley, propose a new approach for confining light on scales much smaller than the wavelength of light. Using hybrid waveguides that incorporate dielectric and plasmonic waveguiding techniques, they are able to confine surface plasmon polaritons very strongly over large distances. The advance could lead to truly nanoscale plasmonics and photonics.

1,905 citations

Journal ArticleDOI
TL;DR: A comparative study of various materials including metals, metal alloys and heavily doped semiconductors is presented in this article, where the performance of each material is evaluated based on quality factors defined for each class of plasmonic devices.
Abstract: Plasmonics is a research area merging the fields of optics and nanoelectronics by confining light with relatively large free-space wavelength to the nanometer scale - thereby enabling a family of novel devices. Current plasmonic devices at telecommunication and optical frequencies face significant challenges due to losses encountered in the constituent plasmonic materials. These large losses seriously limit the practicality of these metals for many novel applications. This paper provides an overview of alternative plasmonic materials along with motivation for each material choice and important aspects of fabrication. A comparative study of various materials including metals, metal alloys and heavily doped semiconductors is presented. The performance of each material is evaluated based on quality factors defined for each class of plasmonic devices. Most importantly, this paper outlines an approach for realizing optimal plasmonic material properties for specific frequencies and applications, thereby providing a reference for those searching for better plasmonic materials.

1,615 citations