scispace - formally typeset
Search or ask a question
Author

Murat Cokol

Other affiliations: Tufts University, Columbia University, Sabancı University  ...read more
Bio: Murat Cokol is an academic researcher from Harvard University. The author has contributed to research in topics: Drug & Acinetobacter baumannii. The author has an hindex of 21, co-authored 42 publications receiving 4898 citations. Previous affiliations of Murat Cokol include Tufts University & Columbia University.

Papers
More filters
Journal ArticleDOI
22 Jan 2010-Science
TL;DR: A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function.
Abstract: A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.

2,225 citations

Journal ArticleDOI
TL;DR: A variety of nuclear localization signals (NLSs) are experimentally known although only one motif was available for database searches through PROSITE, and an overlap between the NLS and DNA‐binding region was found for 90% of the proteins for which both theNLS andDNA‐binding regions were known.
Abstract: A variety of nuclear localization signals (NLSs) are experimentally known although only one motif was available for database searches through PROSITE. We initially collected a set of 91 experimentally verified NLSs from the literature. Through iterated ‘ in silico mutagenesis’ we then extended the set to 214 potential NLSs. This final set matched in 43% of all known nuclear proteins and in no known non‐nuclear protein. We estimated that >17% of all eukaryotic proteins may be imported into the nucleus. Finally, we found an overlap between the NLS and DNA‐binding region for 90% of the proteins for which both the NLS and DNA‐binding regions were known. Thus, evolution seemed to have used part of the existing DNA‐binding mechanism when compartmentalizing DNA‐binding proteins into the nucleus. However, only 56 of our 214 NLS motifs overlapped with DNA‐binding regions. These 56 NLSs enabled a de novo prediction of partial DNA‐binding regions for ∼800 proteins in human, fly, worm and yeast.

709 citations

Journal ArticleDOI
TL;DR: An annotated cluster multidimensional enrichment analysis is developed to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset and reveals insights into small-molecule mechanisms of action, and genomic features that associate with CCL response to small- molecule treatment.
Abstract: Identifying genetic alterations that prime a cancer cell to respond to a particular therapeutic agent can facilitate the development of precision cancer medicines. Cancer cell-line (CCL) profiling of small-molecule sensitivity has emerged as an unbiased method to assess the relationships between genetic or cellular features of CCLs and small-molecule response. Here, we developed annotated cluster multidimensional enrichment analysis to explore the associations between groups of small molecules and groups of CCLs in a new, quantitative sensitivity dataset. This analysis reveals insights into small-molecule mechanisms of action, and genomic features that associate with CCL response to small-molecule treatment. We are able to recapitulate known relationships between FDA-approved therapies and cancer dependencies and to uncover new relationships, including for KRAS -mutant cancers and neuroblastoma. To enable the cancer community to explore these data, and to generate novel hypotheses, we created an updated version of the Cancer Therapeutic Response Portal (CTRP v2). Significance: We present the largest CCL sensitivity dataset yet available, and an analysis method integrating information from multiple CCLs and multiple small molecules to identify CCL response predictors robustly. We updated the CTRP to enable the cancer research community to leverage these data and analyses. Cancer Discov; 5(11); 1210–23. ©2015 AACR . See related commentary by Gray and Mills, [p. 1130][1] . This article is highlighted in the In This Issue feature, [p. 1111][2] [1]: /lookup/volpage/5/1130?iss=11 [2]: /lookup/volpage/5/1111?iss=11

537 citations

Journal ArticleDOI
TL;DR: The majority of drug synergies appear to result from non‐specific promiscuous synergy, and the promiscuity of Tacrolimus and Pentamidine was completely unexpected.
Abstract: Drug synergy allows a therapeutic effect to be achieved with lower doses of component drugs. Drug synergy can result when drugs target the products of genes that act in parallel pathways (‘specific synergy’). Such cases of drug synergy should tend to correspond to synergistic genetic interaction between the corresponding target genes. Alternatively, ‘promiscuous synergy’ can arise when one drug non-specifically increases the effects of many other drugs, for example, by increased bioavailability. To assess the relative abundance of these drug synergy types, we examined 200 pairs of antifungal drugs inS. cerevisiae. We found 38 antifungal synergies, 37 of which were novel. While 14 cases of drug synergy corresponded to genetic interaction, 92% of the synergies we discovered involved only six frequently synergistic drugs. Although promiscuity of four drugs can be explained under the bioavailability model, the promiscuity of Tacrolimus and Pentamidine was completely unexpected. While many drug synergies correspond to genetic interactions, the majority of drug synergies appear to result from non-specific promiscuous synergy.

285 citations

Journal ArticleDOI
20 Mar 2014-PLOS ONE
TL;DR: It is shown that at optimum cultivation conditions, inducing oxidative stress by application of exogenous H2O2 leads to increased cellular lipid content up to 44% when compared with non-treated control groups, and suggest that oxidative stress mediates lipid accumulation.
Abstract: Green algae offer sustainable, clean and eco-friendly energy resource. However, production efficiency needs to be improved. Increasing cellular lipid levels by nitrogen depletion is one of the most studied strategies. Despite this, the underlying physiological and biochemical mechanisms of this response have not been well defined. Algae species adapted to hypersaline conditions can be cultivated in salty waters which are not useful for agriculture or consumption. Due to their inherent extreme cultivation conditions, use of hypersaline algae species is better suited for avoiding culture contamination issues. In this study, we identified a new halophilic Dunaliella salina strain by using 18S ribosomal RNA gene sequencing. We found that growth and biomass productivities of this strain were directly related to nitrogen levels, as the highest biomass concentration under 0.05 mM or 5 mM nitrogen regimes were 495 mg/l and 1409 mg/l, respectively. We also confirmed that nitrogen limitation increased cellular lipid content up to 35% under 0.05 mM nitrogen concentration. In order to gain insight into the mechanisms of this phenomenon, we applied fluorometric, flow cytometric and spectrophotometric methods to measure oxidative stress and enzymatic defence mechanisms. Under nitrogen depleted cultivation conditions, we observed increased lipid peroxidation by measuring an important oxidative stress marker, malondialdehyde and enhanced activation of catalase, ascorbate peroxidase and superoxide dismutase antioxidant enzymes. These observations indicated that oxidative stress is accompanied by increased lipid content in the green alga. In addition, we also showed that at optimum cultivation conditions, inducing oxidative stress by application of exogenous H2O2 leads to increased cellular lipid content up to 44% when compared with non-treated control groups. Our results support that oxidative stress and lipid overproduction are linked. Importantly, these results also suggest that oxidative stress mediates lipid accumulation. Understanding such relationships may provide guidance for efficient production of algal biodiesels.

231 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The properties of three well-known N-terminal sequence motifs directing proteins to the secretory pathway, mitochondria and chloroplasts are described and a brief history of methods to predict subcellular localization based on these sorting signals and other sequence properties are sketched.
Abstract: Determining the subcellular localization of a protein is an important first step toward understanding its function. Here, we describe the properties of three well-known N-terminal sequence motifs directing proteins to the secretory pathway, mitochondria and chloroplasts, and sketch a brief history of methods to predict subcellular localization based on these sorting signals and other sequence properties. We then outline how to use a number of internet-accessible tools to arrive at a reliable subcellular localization prediction for eukaryotic and prokaryotic proteins. In particular, we provide detailed step-by-step instructions for the coupled use of the amino-acid sequence-based predictors TargetP, SignalP, ChloroP and TMHMM, which are all hosted at the Center for Biological Sequence Analysis, Technical University of Denmark. In addition, we describe and provide web references to other useful subcellular localization predictors. Finally, we discuss predictive performance measures in general and the performance of TargetP and SignalP in particular.

3,235 citations

Journal ArticleDOI
03 Jan 2014-Science
TL;DR: In this paper, a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library was described.
Abstract: The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)–Cas9 system for genome editing has greatly expanded the toolbox for mammalian genetics, enabling the rapid generation of isogenic cell lines and mice with modified alleles. Here, we describe a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library. sgRNA expression cassettes were stably integrated into the genome, which enabled a complex mutant pool to be tracked by massively parallel sequencing. We used a library containing 73,000 sgRNAs to generate knockout collections and performed screens in two human cell lines. A screen for resistance to the nucleotide analog 6-thioguanine identified all expected members of the DNA mismatch repair pathway, whereas another for the DNA topoisomerase II ( TOP2A ) poison etoposide identified TOP2A , as expected, and also cyclin-dependent kinase 6, CDK6. A negative selection screen for essential genes identified numerous gene sets corresponding to fundamental processes. Last, we show that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs. Collectively, these results establish Cas9/sgRNA screens as a powerful tool for systematic genetic analysis in mammalian cells.

2,487 citations

Journal ArticleDOI
TL;DR: Approaches used for drug repurposing (also known as drug repositioning) are presented, the challenges faced by the repurpose community are discussed, and innovative ways by which these challenges could be addressed are recommended to help realize the full potential of drugRepurposing.
Abstract: Given the high attrition rates, substantial costs and slow pace of new drug discovery and development, repurposing of 'old' drugs to treat both common and rare diseases is increasingly becoming an attractive proposition because it involves the use of de-risked compounds, with potentially lower overall development costs and shorter development timelines. Various data-driven and experimental approaches have been suggested for the identification of repurposable drug candidates; however, there are also major technological and regulatory challenges that need to be addressed. In this Review, we present approaches used for drug repurposing (also known as drug repositioning), discuss the challenges faced by the repurposing community and recommend innovative ways by which these challenges could be addressed to help realize the full potential of drug repurposing.

2,365 citations

01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations