scispace - formally typeset
Search or ask a question
Author

Murielle Masson

Bio: Murielle Masson is an academic researcher from University of Strasbourg. The author has contributed to research in topics: Poly ADP ribose polymerase & Ubiquitin ligase. The author has an hindex of 24, co-authored 34 publications receiving 3275 citations. Previous affiliations of Murielle Masson include Centre national de la recherche scientifique & École Normale Supérieure.

Papers
More filters
Journal ArticleDOI
TL;DR: Results demonstrate that PARP is a survival factor playing an essential and positive role during DNA damage recovery, and inactivated both alleles by gene targeting in mice.
Abstract: Poly(ADP-ribose) polymerase [PARP; NAD+ ADP-ribosyltransferase; NAD+: poly(adenosine-diphosphate-d-ribosyl)-acceptor ADP-d-ribosyltransferase, EC 2.4.2.30] is a zinc-finger DNA-binding protein that detects specifically DNA strand breaks generated by genotoxic agents. To determine its biological function, we have inactivated both alleles by gene targeting in mice. Treatment of PARP−/− mice either by the alkylating agent N-methyl-N-nitrosourea (MNU) or by γ-irradiation revealed an extreme sensitivity and a high genomic instability to both agents. Following whole body γ-irradiation (8 Gy) mutant mice died rapidly from acute radiation toxicity to the small intestine. Mice-derived PARP−/− cells displayed a high sensitivity to MNU exposure: a G2/M arrest in mouse embryonic fibroblasts and a rapid apoptotic response and a p53 accumulation were observed in splenocytes. Altogether these results demonstrate that PARP is a survival factor playing an essential and positive role during DNA damage recovery.

1,045 citations

Journal ArticleDOI
TL;DR: The results provide strong evidence that PARP is a member of a BER multiprotein complex involved in the detection of DNA interruptions and possibly in the recruitment of XRCC1 and its partners for efficient processing of these breaks in a coordinated manner.
Abstract: The genomic integrity of cells is controlled by a network of protein factors that assess the status of the genome and either cause progression of proliferation or induce a halt in the cell cycle. In eukaryotes, DNA strand breaks, introduced either directly by ionizing radiation or indirectly following enzymatic incision of a DNA lesion, trigger the synthesis of poly(ADP-ribose) by the enzyme poly(ADP-ribose) polymerase (PARP) (1, 13, 39). At the site of breakage, PARP catalyzes the transfer of the ADP-ribose moiety from its substrate, NAD+, to a limited number of protein acceptors involved in chromatin architecture and DNA metabolism, including the enzyme itself. These modified proteins, which carry long chains of negatively charged ADP-ribose polymers, lose their affinity for DNA and are thus inactivated. The short half-life of the polymer is attributed to the high activity of poly(ADP-ribose) glycohydrolase, which cleaves the ribose-ribose bond (28, 30). Therefore, poly(ADP-ribosylation) is an immediate but transient postranslational modification of nuclear proteins, induced by DNA-damaging agents. The physiological role of PARP has been much debated in the last decade, but recent molecular and genetic approaches, including expression of either a dominant-negative mutant (26, 36, 44) or antisense oligonucleotides (14), have clearly implicated PARP in the base excision repair (BER) pathway. A more definitive assessment of PARP function was recently provided by the generation of PARP-deficient mice by homologous recombination (35, 53). We found that PARP−/− mice are hypersensitive to monofunctional alkylating agents and γ-irradiation and display a marked genomic instability (sister chromatid exchanges and chromatid and chromosome breaks) following DNA damage (35). Interestingly, γ-irradiation of these mice causes acute toxicity of the epithelia of their small intestines (35), as has been observed with other DNA damage and signalling and repair enzyme deficiencies (2, 3), thus emphasizing the crucial function of DNA surveillance programs of rapidly dividing cells. Similar results indicating that PARP is important for the maintenance of genomic stability following environmental or experimental stress were recently obtained (54). In this work, we have used the two-hybrid system to identify genes encoding proteins that putatively interact with PARP and are involved in its biological function. The human PARP cDNA fused to the LexA-encoding DNA-binding domain (DBD) was used as bait to screen a HeLa cDNA library fused with the activation domain of Gal4. This screening resulted in the identification of the BER pathway protein XRCC1 (X-ray repair cross-complementing 1) as a factor that associates with PARP. This interaction was further confirmed by in vivo experiments with glutathione S-transferase (GST)-tagged fusion proteins expressed in Cos-7 and HeLa cells. XRCC1 and PARP were found to interact via their respective BRCT (BRCA1 C terminus) modules (4, 9) and via an additional site located in the N-terminal zinc-finger domain of PARP. This association dramatically decreased the catalytic activity of PARP without modifying its nick sensor function. Therefore, the association of PARP with XRCC1, a partner of DNA ligase III (7, 8) and DNA polymerase β (25), is suggestive of a role in the detection and protection of a DNA strand break and the subsequent targeting of a BER complex to the damaged site.

932 citations

Journal ArticleDOI
28 Jan 2016-Nature
TL;DR: The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumour suppressor pathway, and provides a framework for the design of inhibitory therapeutic strategies against oncogenesis mediated by human papilloma virus.
Abstract: The p53 pro-apoptotic tumour suppressor is mutated or functionally altered in most cancers. In epithelial tumours induced by 'high-risk' mucosal human papilloma viruses, including human cervical carcinoma and a growing number of head-and-neck cancers, p53 is degraded by the viral oncoprotein E6 (ref. 2). In this process, E6 binds to a short leucine (L)-rich LxxLL consensus sequence within the cellular ubiquitin ligase E6AP. Subsequently, the E6/E6AP heterodimer recruits and degrades p53 (ref. 4). Neither E6 nor E6AP are separately able to recruit p53 (refs 3, 5), and the precise mode of assembly of E6, E6AP and p53 is unknown. Here we solve the crystal structure of a ternary complex comprising full-length human papilloma virus type 16 (HPV-16) E6, the LxxLL motif of E6AP and the core domain of p53. The LxxLL motif of E6AP renders the conformation of E6 competent for interaction with p53 by structuring a p53-binding cleft on E6. Mutagenesis of critical positions at the E6-p53 interface disrupts p53 degradation. The E6-binding site of p53 is distal from previously described DNA- and protein-binding surfaces of the core domain. This suggests that, in principle, E6 may avoid competition with cellular factors by targeting both free and bound p53 molecules. The E6/E6AP/p53 complex represents a prototype of viral hijacking of both the ubiquitin-mediated protein degradation pathway and the p53 tumour suppressor pathway. The present structure provides a framework for the design of inhibitory therapeutic strategies against oncogenesis mediated by human papilloma virus.

297 citations

Journal ArticleDOI
TL;DR: This article summarizes the present knowledge in this field of poly(ADP-ribose) polymerase and states that the structure and the function of this abundant and highly conserved enzyme are currently unknown.
Abstract: Poly(ADP-ribose) polymerase (PARP) participates in the intricate network of systems developed by the eukaryotic cell to cope with the numerous environmental and endogenous genetoxic agents Cloning of the PARP gene has allowed the development of genetic and molecular approaches to elucidate the structure and the function of this abundant and highly conserved enzyme This article summarizes our present knowledge in this field

209 citations

Journal ArticleDOI
TL;DR: E6 structure-function analysis provides new clues for understanding and counteracting the complex pathways of HPV-mediated pathogenesis as a chameleon protein combining a conserved structural scaffold with highly variable surfaces participating in generic or specialized HPV functions.

168 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review discusses recent information on functions and mechanisms of the ubiquitin system and focuses on what the authors know, and would like to know, about the mode of action of ubi...
Abstract: The selective degradation of many short-lived proteins in eukaryotic cells is carried out by the ubiquitin system. In this pathway, proteins are targeted for degradation by covalent ligation to ubiquitin, a highly conserved small protein. Ubiquitin-mediated degradation of regulatory proteins plays important roles in the control of numerous processes, including cell-cycle progression, signal transduction, transcriptional regulation, receptor down-regulation, and endocytosis. The ubiquitin system has been implicated in the immune response, development, and programmed cell death. Abnormalities in ubiquitin-mediated processes have been shown to cause pathological conditions, including malignant transformation. In this review we discuss recent information on functions and mechanisms of the ubiquitin system. Since the selectivity of protein degradation is determined mainly at the stage of ligation to ubiquitin, special attention is focused on what we know, and would like to know, about the mode of action of ubiquitin-protein ligation systems and about signals in proteins recognized by these systems.

7,888 citations

Journal ArticleDOI
14 Apr 2005-Nature
TL;DR: It is proposed that, in the absence of PARP1, spontaneous single-strand breaks collapse replication forks and trigger homologous recombination for repair and exploited in order to kill BRCA2-deficient tumours by PARP inhibition alone.
Abstract: Poly(ADP-ribose) polymerase (PARP1) facilitates DNA repair by binding to DNA breaks and attracting DNA repair proteins to the site of damage. Nevertheless, PARP1-/- mice are viable, fertile and do not develop early onset tumours. Here, we show that PARP inhibitors trigger gamma-H2AX and RAD51 foci formation. We propose that, in the absence of PARP1, spontaneous single-strand breaks collapse replication forks and trigger homologous recombination for repair. Furthermore, we show that BRCA2-deficient cells, as a result of their deficiency in homologous recombination, are acutely sensitive to PARP inhibitors, presumably because resultant collapsed replication forks are no longer repaired. Thus, PARP1 activity is essential in homologous recombination-deficient BRCA2 mutant cells. We exploit this requirement in order to kill BRCA2-deficient tumours by PARP inhibition alone. Treatment with PARP inhibitors is likely to be highly tumour specific, because only the tumours (which are BRCA2-/-) in BRCA2+/- patients are defective in homologous recombination. The use of an inhibitor of a DNA repair enzyme alone to selectively kill a tumour, in the absence of an exogenous DNA-damaging agent, represents a new concept in cancer treatment.

4,262 citations

01 Jan 2000
TL;DR: This annex is aimed at providing a sound basis for conclusions regarding the number of significant radiation accidents that have occurred, the corresponding levels of radiation exposures and numbers of deaths and injuries, and the general trends for various practices, in the context of the Committee's overall evaluations of the levels and effects of exposure to ionizing radiation.
Abstract: NOTE The report of the Committee without its annexes appears as Official Records of the General Assembly, Sixty-third Session, Supplement No. 46. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The country names used in this document are, in most cases, those that were in use at the time the data were collected or the text prepared. In other cases, however, the names have been updated, where this was possible and appropriate, to reflect political changes. Scientific Annexes Annex A. Medical radiation exposures Annex B. Exposures of the public and workers from various sources of radiation INTROdUCTION 1. In the course of the research and development for and the application of atomic energy and nuclear technologies, a number of radiation accidents have occurred. Some of these accidents have resulted in significant health effects and occasionally in fatal outcomes. The application of technologies that make use of radiation is increasingly widespread around the world. Millions of people have occupations related to the use of radiation, and hundreds of millions of individuals benefit from these uses. Facilities using intense radiation sources for energy production and for purposes such as radiotherapy, sterilization of products, preservation of foodstuffs and gamma radiography require special care in the design and operation of equipment to avoid radiation injury to workers or to the public. Experience has shown that such technology is generally used safely, but on occasion controls have been circumvented and serious radiation accidents have ensued. 2. Reviews of radiation exposures from accidents have been presented in previous UNSCEAR reports. The last report containing an exclusive chapter on exposures from accidents was the UNSCEAR 1993 Report [U6]. 3. This annex is aimed at providing a sound basis for conclusions regarding the number of significant radiation accidents that have occurred, the corresponding levels of radiation exposures and numbers of deaths and injuries, and the general trends for various practices. Its conclusions are to be seen in the context of the Committee's overall evaluations of the levels and effects of exposure to ionizing radiation. 4. The Committee's evaluations of public, occupational and medical diagnostic exposures are mostly concerned with chronic exposures of …

3,924 citations

Journal ArticleDOI
TL;DR: The addition to proteins of the negatively charged polymer of ADP-ribose (PAR), which is synthesized by PAR polymerases (PARPs) from NAD+, is a unique post-translational modification that regulates not only cell survival and cell-death programmes, but also an increasing number of other biological functions with which novel members of the PARP family have been associated.
Abstract: The addition to proteins of the negatively charged polymer of ADP-ribose (PAR), which is synthesized by PAR polymerases (PARPs) from NAD(+), is a unique post-translational modification. It regulates not only cell survival and cell-death programmes, but also an increasing number of other biological functions with which novel members of the PARP family have been associated. These functions include transcriptional regulation, telomere cohesion and mitotic spindle formation during cell division, intracellular trafficking and energy metabolism.

1,820 citations

Journal ArticleDOI
TL;DR: The total dependence of poly(ADP-ribose) synthesis on DNA strand breaks strongly suggests that this post-translational modification is involved in the metabolism of nucleic acids, and the presence of PARP in these multiprotein complexes clearly supports an important role for poly(ADE-ribosyl)ation reactions in DNA transactions.
Abstract: Poly(ADP-ribosyl)ation is a post-translational modification of proteins. During this process, molecules of ADP-ribose are added successively on to acceptor proteins to form branched polymers. This modification is transient but very extensive in vivo, as polymer chains can reach more than 200 units on protein acceptors. The existence of the poly(ADP-ribose) polymer was first reported nearly 40 years ago. Since then, the importance of poly(ADP-ribose) synthesis has been established in many cellular processes. However, a clear and unified picture of the physiological role of poly(ADP-ribosyl)ation still remains to be established. The total dependence of poly(ADP-ribose) synthesis on DNA strand breaks strongly suggests that this post-translational modification is involved in the metabolism of nucleic acids. This view is also supported by the identification of direct protein-protein interactions involving poly(ADP-ribose) polymerase (113 kDa PARP), an enzyme catalysing the formation of poly(ADP-ribose), and key effectors of DNA repair, replication and transcription reactions. The presence of PARP in these multiprotein complexes, in addition to the actual poly(ADP-ribosyl)ation of some components of these complexes, clearly supports an important role for poly(ADP-ribosyl)ation reactions in DNA transactions. Accordingly, inhibition of poly(ADP-ribose) synthesis by any of several approaches and the analysis of PARP-deficient cells has revealed that the absence of poly(ADP-ribosyl)ation strongly affects DNA metabolism, most notably DNA repair. The recent identification of new poly(ADP-ribosyl)ating enzymes with distinct (non-standard) structures in eukaryotes and archaea has revealed a novel level of complexity in the regulation of poly(ADP-ribose) metabolism.

1,797 citations