scispace - formally typeset
Search or ask a question
Author

Murray Sargent

Other affiliations: University of Arizona
Bio: Murray Sargent is an academic researcher from Microsoft. The author has contributed to research in topics: Laser & Quantum optics. The author has an hindex of 23, co-authored 116 publications receiving 2990 citations. Previous affiliations of Murray Sargent include University of Arizona.


Papers
More filters
Book
01 Jan 1990
TL;DR: In this article, the authors describe the quantum theory of a laser and its application in the field of quantum electrodynamics, including entanglement, Bell Inequalities and quantum information.
Abstract: Classical Electromagnetic Fields.- Classical Nonlinear Optics.- Quantum Mechanical Background.- Mixtures and the Density Operator.- CW Field Interactions.- Mechanical Effects of Light.- to Laser Theory.- Optical Bistability.- Saturation Spectroscopy.- Three and Four Wave Mixing.- Time-Varying Phenomena in Cavities.- Coherent Transients.- Field Quantization.- Interaction Between Atoms and Quantized Fields.- System-Reservoir Interactions.- Resonance Fluorescence.- Squeezed States of Light.- Cavity Quantum Electrodynamics.- Quantum Theory of a Laser.- Entanglement, Bell Inequalities and Quantum Information.

951 citations

Book
01 Apr 1994
TL;DR: In this paper, the authors present a theoretical analysis of the free-carrier theory of the laser and the Coulomb effect in terms of band mixing and strain in Quantum Wells.
Abstract: 1. Semiconductor Laser Diodes 2. Basic Concepts 3. Free-Carrier Theory 4. Coulomb Effects 5. Many-Body Gain 6. Band Mixing and Strain in Quantum Wells 7. Semiclassical laser Theory 8. Multimode Operation 9. Quantum Theory of the Laser 10. Propagation Effects 11. Beyond Quasiequilibrium Theory, Appendices A-e, Index

341 citations

Journal ArticleDOI
TL;DR: In this paper, the photon concept was formalized in the quantum theory of radiation, which has had unfailing success in explaining the interaction of electromagnetic radiation with matter, seemingly limited only by the ability of physicists to perform the indicated calculations.
Abstract: The idea of the photon has stirred the imaginations of physicists ever since 1905 when Einstein originally proposed the use of light quanta to explain the photoelectric effect. This concept is formalized in the quantum theory of radiation, which has had unfailing success in explaining the interaction of electromagnetic radiation with matter, seemingly limited only by the ability of physicists to perform the indicated calculations. Nevertheless, it has its conceptual problems—various infinities and frequent misinterpretations. Consequently an increasing number of workers are asking, “to what extent is the quantized field really necessary and useful?” In fact the experimental results of the photoelectric effect were explained by G. Wentzel in 1927 without the quantum theory of radiation. Similarly most electro‐optic phenomena such as stimulated emission,reaction of the emitted field on the emitting atom, resonance fluorescence, and so on, do not require the quantization of the field for their explanation. As we will see, these processes can all be quantitatively explained and physically understood in terms of the semiclassical theory of the matter–field interaction in which the electric field is treated classically while the atoms obey the laws of quantum mechanics. The quantized field is fundamentally required for accurate descriptions of certain processes involving fluctuations in the electromagnetic field: for example, spontaneous emission, the Lamb shift, the anomalous magnetic moment of the electron, and certain aspects of blackbody radiation. (The Compton effect also fits here, but see later under references 8b and c.) Here we will outline how the photon concept originated and developed, where it is not required and is often misused, and finally where it plays an essential role in the understanding of physical phenomena. In our discussion we will attempt to give a logically consistent definition of the word “photon”—a statement far more necessary than one might think, for so many contradictory uses exist of this elusive beast. In particular consider the original coining of the word by G. N. Lewis: “[because it appears to spend] only a minute fraction of its existence as a carrier of radiant energy, while the rest of the time it remains an important structural element within the atom…, I therefore take the liberty of proposing for this hypothetical new atom which is not light but plays an essential part in every process of radiation, the name photon!” (our exclamation point). Clearly the present usage of the word is very different. It has its logical foundation in the quantum theory of radiation. But the “fuzzy‐ball” picture of a photon often leads to unnecessary difficulties.

135 citations

Journal ArticleDOI
TL;DR: The physical approach used by Lamb to treat the laser can also treat the absorption of a probe wave by a medium subjected to a saturating wave, which is known as saturation spectroscopy as discussed by the authors.

96 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: An overview of the theoretical principles involved, as well as applications ranging from high-precision quantum electrodynamics experiments to quantum-information processing can be found in this paper.
Abstract: Quantum dots embedded in photonics nanostructures provide unprecedented control over the interaction between light and matter. This review gives an overview of the theoretical principles involved, as well as applications ranging from high-precision quantum electrodynamics experiments to quantum-information processing.

1,240 citations

Journal Article
TL;DR: Squeezed states of the electromagnetic field have been generated by nondegenerate four-wave mixing due to Na atoms in an optical cavity by measuring the total noise level in the deamplified quadrature below the vacuum noise level.
Abstract: Squeezed states of the electromagnetic field have been generated by nondegenerate four-wave mixing due to Na atoms in an optical cavity. The optical noise in the cavity, comprised of primarily vacuum fluctuations and a small component of spontaneous emission from the pumped Na atoms, is amplified in one quadrature of the optical field and deamplified in the other quadrature. These quadrature components are measured with a balanced homodyne detector. The total noise level in the deamplified quadrature drops below the vacuum noise level.

1,217 citations

Journal ArticleDOI
TL;DR: This review looks at the concepts and state-of-the-art concerning the strong coupling of surface plasmon-polariton modes to states associated with quantum emitters such as excitons in J-aggregates, dye molecules and quantum dots.
Abstract: In this review we look at the concepts and state-of-the-art concerning the strong coupling of surface plasmon-polariton modes to states associated with quantum emitters such as excitons in J-aggregates, dye molecules and quantum dots. We explore the phenomenon of strong coupling with reference to a number of examples involving electromagnetic fields and matter. We then provide a concise description of the relevant background physics of surface plasmon polaritons. An extensive overview of the historical background and a detailed discussion of more recent relevant experimental advances concerning strong coupling between surface plasmon polaritons and quantum emitters is then presented. Three conceptual frameworks are then discussed and compared in depth: classical, semi-classical and fully quantum mechanical; these theoretical frameworks will have relevance to strong coupling beyond that involving surface plasmon polaritons. We conclude our review with a perspective on the future of this rapidly emerging field, one we are sure will grow to encompass more intriguing physics and will develop in scope to be of relevance to other areas of science.

1,190 citations

Journal ArticleDOI
TL;DR: In this paper, the authors exploit the strong coupling between individual optical emitters and propagating surface plasmons confined to a conducting nanowire to realize strong nonlinear interactions at the single-photon level.
Abstract: Photons rarely interact—which makes it challenging to build all-optical devices in which one light signal controls another. Even in nonlinear optical media, in which two beams can interact because of their influence on the medium’s refractive index, this interaction is weak at low light levels. Here, we propose a novel approach to realizing strong nonlinear interactions at the single-photon level, by exploiting the strong coupling between individual optical emitters and propagating surface plasmons confined to a conducting nanowire. We show that this system can act as a nonlinear two-photon switch for incident photons propagating along the nanowire, which can be coherently controlled using conventional quantum-optical techniques. Furthermore, we discuss how the interaction can be tailored to create a single-photon transistor, where the presence (or absence) of a single incident photon in a ‘gate’ field is sufficient to allow (or prevent) the propagation of subsequent ‘signal’ photons along the wire.

1,175 citations

Journal ArticleDOI
TL;DR: The Jaynes-Cummings model was used to examine the classical aspects of spontaneous emission and reveal the existence of Rabi oscillations in atomic excitation probabilities for fields with sharply defined energy as mentioned in this paper.
Abstract: The Jaynes-Cummings model (JCM), a soluble fully quantum mechanical model of an atom in a field, was first used (in 1963) to examine the classical aspects of spontaneous emission and to reveal the existence of Rabi oscillations in atomic excitation probabilities for fields with sharply defined energy (or photon number). For fields having a statistical distributions of photon numbers the oscillations collapse to an expected steady value. In 1980 it was discovered that with appropriate initial conditions (e.g. a near-classical field), the Rabi oscillations would eventually revive, only to collapse and revive repeatedly in a complicated pattern. The existence of these revivals, present in the analytic solutions of the JCM, provided direct evidence for discreteness of field excitation (photons) and hence for the truly quantum nature of radiation. Subsequent study revealed further non-classical properties of the JCM field, such as a tendency of the photons to antibunch. Within the last two years it ha...

1,086 citations