scispace - formally typeset
Search or ask a question
Author

Murugan Ramalingam

Bio: Murugan Ramalingam is an academic researcher from National Institute of Standards and Technology. The author has contributed to research in topics: Amorphous calcium phosphate & Tissue engineering. The author has an hindex of 2, co-authored 2 publications receiving 61 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: A 2-spinnerette device that can directly electrospin nanofiber scaffolds containing a gradient in composition that can be used to engineer interfacial tissues such as ligament and tendon is designed.
Abstract: We have designed a 2-spinnerette device that can directly electrospin nanofiber scaffolds containing a gradient in composition that can be used to engineer interfacial tissues such as ligament and tendon. Two types of nanofibers are simultaneously electrospun in an overlapping pattern to create a nonwoven mat of nanofibers containing a composition gradient. The approach is an advance over previous methods due to its versatility - gradients can be formed from any materials that can be electrospun. A dye was used to characterize the 2-spinnerette approach and applicability to tissue engineering was demonstrated by fabricating nanofibers with gradients in amorphous calcium phosphate nanoparticles (nACP). Adhesion and proliferation of osteogenic cells (MC3T3-E1 murine pre-osteoblasts) on gradients was enhanced on the regions of the gradients that contained higher nACP content yielding a graded osteoblast response. Since increases in soluble calcium and phosphate ions stimulate osteoblast function, we measured their release and observed significant release from nanofibers containing nACP. The nanofiber-nACP gradients fabricated herein can be applied to generate tissues with osteoblast gradients such as ligaments or tendons. In conclusion, these results introduce a versatile approach for fabricating nanofiber gradients that can have application for engineering graded tissues.

61 citations

Book ChapterDOI
TL;DR: A platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format is developed that can be used for screening cell-material interactions.
Abstract: We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.

3 citations


Cited by
More filters
01 Aug 2010
TL;DR: These analyses show that optimal hES cell substrates are generated from monomers with high acrylate content, have a moderate wettability, and employ integrin αvβ3 and αv β5 engagement with adsorbed vitronectin to promote colony formation.
Abstract: Structure–property relationships between material properties and stem cell behaviour are investigated using high-throughput methods. The data identify the optimal substrates within a range of different polymeric surfaces to support the growth and self-renewal of human embryonic stem cells from fully dissociated single cells.

468 citations

Journal ArticleDOI
TL;DR: A greater understanding of the molecular mechanisms involved in T/L development and natural healing, coupled with the capability of producing complex biomaterials to deliver multiple biofactors with high spatiotemporal resolution and specificity, should lead to regenerative procedures that more closely recapitulate T/l morphogenesis.
Abstract: Tendon and ligament (T/L) are dense connective tissues connecting bone to muscle and bone to bone, respectively. Similar to other musculoskeletal tissues, T/L arise from the somitic mesoderm, but they are derived from a recently discovered somitic compartment, the syndetome. The adjacent sclerotome and myotome provide inductive signals to the interposing syndetome, thereby upregulating the expression of the transcription factor Scleraxis, which in turn leads to further tenogenic and ligamentogenic differentiation. These advances in the understanding of T/L development have been sought to provide a knowledge base for improving the healing of T/L injuries, a common clinical challenge due to the intrinsically poor natural healing response. Specifically, the three most common tendon injuries involve tearing of the rotator cuff of the shoulder, the flexor tendon of the hand, and the Achilles tendon. At present, injuries to these tissues are treated by surgical repair and/or conservative approaches, including biophysical modalities such as physical rehabilitation and cryotherapy. Unfortunately, the healing tissue forms fibrovascular scar and possesses inferior mechanical and biochemical properties as compared to native T/L. Therefore, tissue engineers have sought to improve upon the natural healing response by augmenting the injured tissue with cells, scaffolds, bioactive agents, and mechanical stimulation. These strategies show promise, both in vitro and in vivo, for improving T/L healing. However, several challenges remain in restoring full T/L function following injury, including uncertainties over the optimal combination of these biological agents as well how to best deliver tissue engineered elements to the injury site. A greater understanding of the molecular mechanisms involved in T/L development and natural healing, coupled with the capability of producing complex biomaterials to deliver multiple growth factors with high spatiotemporal resolution and specificity, will allow tissue engineers to more closely recapitulate T/L morphogenesis, thereby offering future patients the prospect of T/L regeneration, as opposed to simple tissue repair.

329 citations

Journal ArticleDOI
TL;DR: A description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone and a description of current efforts in interface tissue engineering are described.
Abstract: Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions.

318 citations

Journal ArticleDOI
TL;DR: These understandings would help researchers to further uncover the underlying mechanisms and interactions in nano-CaP stem cell constructs in vitro and in vivo, tailor nano- CaP composite construct design and stem cell type selection to enhance cell function and bone regeneration, and translate laboratory findings to clinical treatments.
Abstract: Tissue engineering is promising to meet the increasing need for bone regeneration. Nanostructured calcium phosphate (CaP) biomaterials/scaffolds are of special interest as they share chemical/crystallographic similarities to inorganic components of bone. Three applications of nano-CaP are discussed in this review: nanostructured calcium phosphate cement (CPC); nano-CaP composites; and nano-CaP coatings. The interactions between stem cells and nano-CaP are highlighted, including cell attachment, orientation/morphology, differentiation and in vivo bone regeneration. Several trends can be seen: (i) nano-CaP biomaterials support stem cell attachment/proliferation and induce osteogenic differentiation, in some cases even without osteogenic supplements; (ii) the influence of nano-CaP surface patterns on cell alignment is not prominent due to non-uniform distribution of nano-crystals; (iii) nano-CaP can achieve better bone regeneration than conventional CaP biomaterials; (iv) combining stem cells with nano-CaP accelerates bone regeneration, the effect of which can be further enhanced by growth factors; and (v) cell microencapsulation in nano-CaP scaffolds is promising for bone tissue engineering. These understandings would help researchers to further uncover the underlying mechanisms and interactions in nano-CaP stem cell constructs in vitro and in vivo, tailor nano-CaP composite construct design and stem cell type selection to enhance cell function and bone regeneration, and translate laboratory findings to clinical treatments.

284 citations

Journal ArticleDOI
TL;DR: In this paper, the relationship between cellular responses and physically patterned surfaces is discussed, which could be applied to various biomedical scaffolds used in tissue engineering applications, and fabrication methods for obtaining physically-patterned microscale and nanoscale surfaces are reviewed.
Abstract: Cellular behavior can be influenced by the chemical and physical surface characteristics of biomedical substrates. To understand the relationships between various topographical surface patterns and cellular activities, various types of pattern models have been developed and examined in a range of sizes (microscale, nanoscale, and hierarchical structures consisting of both) and shapes (pillar, hole, groove, grate, grid, and island). Here, we review fabrication methods for obtaining physically patterned microscale and nanoscale surfaces, and discuss the relationships between cellular responses and physically patterned surfaces, which could be applied to various biomedical scaffolds used in tissue engineering applications. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 102B: 1580–1594, 2014.

160 citations