scispace - formally typeset
Search or ask a question
Author

Mutaib M Mashraqi

Bio: Mutaib M Mashraqi is an academic researcher from Najran University. The author has contributed to research in topics: Medicine & Biology. The author has an hindex of 1, co-authored 7 publications receiving 2 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors have analyzed the whole genomes of different coronaviruses infecting humans and animals in different geographical locations around the world and identified the similarity and the mutational adaptation of the coronavirus from different host and geographical locations to the SARS-CoV2.
Abstract: Novel strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) causes mild to severe respiratory illness. The early symptoms may be fever, dry cough, sour throat, and difficulty in breathing which may lead to death in severe cases. Compared to previous outbreaks like SARS-CoV and Middle East Respiratory Syndrome (MERS), SARS-CoV2 disease (COVID-19) outbreak has been much distressing due to its high rate of infection but low infection fatality rate (IFR) with 1.4% around the world. World Health Organization (WHO) has declared (COVID-19) a pandemic on March 11, 2020. In the month of January 2020, the whole genome of SARS-CoV2 was sequenced which made work easy for researchers to develop diagnostic kits and to carry out drug repurposing to effectively alleviate the pandemic situation in the world. Now, it is important to understand why this virus has high rate of infectivity or is there any factor involved at the genome level which actually facilitates this virus infection globally? In this study, we have extensively analyzed the whole genomes of different coronaviruses infecting humans and animals in different geographical locations around the world. The main aim of the study is to identify the similarity and the mutational adaptation of the coronaviruses from different host and geographical locations to the SARS-CoV2 and provide a better strategy to understand the mutational rate for specific target-based drug designing. This study is focused to every annotation in a comparative manner which includes SNPs, repeat analysis with the different categorization of the short-sequence repeats and long-sequence repeats, different UTR's, transcriptional factors, and the predicted matured peptides with the specific length and positions on the genomes. The extensive analysis on SNPs revealed that Wuhan SARS-CoV2 and Indian SARS-CoV2 are having only eight SNPs. Collectively, phylogenetic analysis, repeat analysis, and the polymorphism revealed the genomic conserveness within the SARS-CoV2 and few other coronaviruses with very less mutational chances and the huge distance and mutations from the few other species.

12 citations

Journal ArticleDOI
TL;DR: This comprehensive review is to summarize and investigate the literature regarding recent advancements in pyridine-based heterocycles to treat several kinds of cancer and to support the new thoughts to pursue the most active and less toxic rational designs.
Abstract: Pyridine derivatives are the most common and significant heterocyclic compounds, which show their fundamental characteristics to various pharmaceutical agents and natural products. Pyridine derivatives possess several pharmacological properties and a broad degree of structural diversity that is considered most valuable to explore the novel therapeutic agents. These compounds have an extensive range of biological activities such as antifungal, antibacterial, anticancer, anti-obesity, anti-inflammatory, antitubercular, antihypertensive, antineuropathic, antihistaminic, antiviral activities, and antiparasitic. The potent therapeutic properties of pyridine derivatives allow medicinal chemists to synthesize novel and effective chemotherapeutic agents. Consequently, the imperative objective of this comprehensive review is to summarize and investigate the literature regarding recent advancements in pyridine-based heterocycles to treat several kinds of cancer. Furthermore, the performances of pyridine derivatives were compared with some standard drugs including etoposide, sorafenib, cisplatin, and triclosan against different cancer cell lines. We hope this study will support the new thoughts to pursue the most active and less toxic rational designs.

12 citations

Journal ArticleDOI
22 Nov 2021-Vaccine
TL;DR: Wang et al. as mentioned in this paper combined immunological approaches with molecular docking approaches for three highly antigenic proteins to design vaccines against Klebsiella aerogenes, and the synthesis of the B-cell, T-cell (CTL and HTL) and IFNγ epitopes of the targeted proteins was performed and most conserved epitopes were chosen for future research studies.

7 citations

Journal ArticleDOI
01 Jan 2023-Vaccines
TL;DR: In this paper , an updated review has been developed to understand the involvement of T cells in the infection mechanism, which in turn determines the prognosis of the disease, and also focused on the T cells' exhaustion under certain conditions and how these functional perturbations can be modulated for an effective immune response against SARS-CoV-2.
Abstract: The emergence of novel variants of SARS-CoV-2 and their abilities to evade the immune response elicited through presently available vaccination makes it essential to recognize the mechanisms through which SARS-CoV-2 interacts with the human immune response. It is essential not only to comprehend the infection mechanism of SARS-CoV-2 but also for the generation of effective and reliable vaccines against COVID-19. The effectiveness of the vaccine is supported by the adaptive immune response, which mainly consists of B and T cells, which play a critical role in deciding the prognosis of the COVID-19 disease. T cells are essential for reducing the viral load and containing the infection. A plethora of viral proteins can be recognized by T cells and provide a broad range of protection, especially amid the emergence of novel variants of SARS-CoV-2. However, the hyperactivation of the effector T cells and reduced number of lymphocytes have been found to be the key characteristics of the severe disease. Notably, excessive T cell activation may cause acute respiratory distress syndrome (ARDS) by producing unwarranted and excessive amounts of cytokines and chemokines. Nevertheless, it is still unknown how T-cell-mediated immune responses function in determining the prognosis of SARS-CoV-2 infection. Additionally, it is unknown how the functional perturbations in the T cells lead to the severe form of the disease and to reduced protection not only against SARS-CoV-2 but many other viral infections. Hence, an updated review has been developed to understand the involvement of T cells in the infection mechanism, which in turn determines the prognosis of the disease. Importantly, we have also focused on the T cells’ exhaustion under certain conditions and how these functional perturbations can be modulated for an effective immune response against SARS-CoV-2. Additionally, a range of therapeutic strategies has been discussed that can elevate the T cell-mediated immune response either directly or indirectly.

7 citations

Journal ArticleDOI
TL;DR: Hemi-Babim and Fenoterol are a beta-2 adrenergic agonist used for the symptomatic treatment of asthma as a bronchodilator and tocolytic and performed well in molecular dynamics simulation studies, providing evidence that the said drugs can work against the MPro and papain-like protease, which are the main drug targets.
Abstract: The coronaviruses belong to the Coronaviridae family, and one such member, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), is causing significant destruction around the world in the form of a global pandemic. Although vaccines have been developed, their effectiveness and level of protection is still a major concern, even after emergency approval from the World Health Organisation (WHO). At the community level, no natural medicine is currently available as a cure. In this study, we screened the vast library from Drug Bank and identified Hemi-Babim and Fenoterol as agents that can work against SARS-CoV-2. Furthermore, we performed molecular dynamics (MD) simulation for both compounds with their respective proteins, providing evidence that the said drugs can work against the MPro and papain-like protease, which are the main drug targets. Inhibiting the action of these targets may lead to retaining the virus. Fenoterol is a beta-2 adrenergic agonist used for the symptomatic treatment of asthma as a bronchodilator and tocolytic. In this study, Hemi-Babim and Fenoterol showed good docking scores of −7.09 and −7.14, respectively, and performed well in molecular dynamics simulation studies. Re-purposing the above medications has huge potential, as their effects are already well-proven and under public utilisation for asthma-related problems. Hence, after the comprehensive pipeline of molecular docking, MMGBSA, and MD simulation studies, these drugs can be tested in-vivo for further human utilisation.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is hoped this study will support the new thoughts to design biological active compounds and highly selective and effective chemosensors for the detection of various species in various samples (environmental, agricultural, and biological).
Abstract: Pyridine derivatives are the most common and significant heterocyclic compounds, which play an important role in various fields ranging from medicinal to chemosensing applications. Pyridine derivatives possess different biological activities such as antifungal, antibacterial, antioxidant, antiglycation, analgesic, antiparkinsonian, anticonvulsant, anti-inflammatory, ulcerogenic, antiviral, and anticancer activity. Furthermore, these derivatives have a high affinity for various ions and neutral species and can be used as a highly effective chemosensor for the determination of different species. In this review article, generally used synthetic routes of pyridine, structural characterization, medicinal applications, and potential of pyridine derivatives in analytical chemistry as chemosensors have been discussed. We hope this study will support the new thoughts to design biological active compounds and highly selective and effective chemosensors for the detection of various species (anions, cations, and neutral species) in various samples (environmental, agricultural, and biological).

14 citations

Journal ArticleDOI
TL;DR: The consensus model has successfully identified 75 compounds with an accuracy range of 70-100% as active compounds against SARS-CoV-2 RBD protein and these drugs can be further tested in vivo for further human utilization.
Abstract: Abstract Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a member of the Coronaviridae family, causing major destructions to human life directly and indirectly to the economic crisis around the world. Although there is significant reporting on the whole genome sequences and updated data for the different receptors are widely analyzed and screened to find a proper medication. Only a few bioassay experiments were completed against SARS-CoV-2 spike protein. We collected the compounds dataset from the PubChem Bioassay database having 1786 compounds and split it into the ratio of 80–20% for model training and testing purposes, respectively. Initially, we have created 11 models and validated them using a fivefold validation strategy. The hybrid consensus model shows a predictive accuracy of 95.5% for training and 94% for the test dataset. The model was applied to screen a virtual chemical library of Natural products of 2598 compounds. Our consensus model has successfully identified 75 compounds with an accuracy range of 70–100% as active compounds against SARS-CoV-2 RBD protein. The output of ML data (75 compounds) was taken for the molecular docking and dynamics simulation studies. In the complete analysis, the Epirubicin and Daunorubicin have shown the docking score of −9.937 and −9.812, respectively, and performed well in the molecular dynamics simulation studies. Also, Pirarubicin, an analogue of anthracycline, has widely been used due to its lower cardiotoxicity. It shows the docking score of −9.658, which also performed well during the complete analysis. Hence, after the following comprehensive pipeline-based study, these drugs can be further tested in vivo for further human utilization. Communicated by Ramaswamy H. Sarma

13 citations

Journal ArticleDOI
28 Apr 2022-Vaccines
TL;DR: The present study aimed to apply modern computational approaches to generate a multi-epitope-based vaccine that expresses antigenic determinants prioritized from the core proteome of two T. whipplei whole proteomes and has a promising potential for eliciting protective and targeted immunogenicity.
Abstract: Whipple’s disease is caused by T. whipplei, a Gram-positive pathogenic bacterium. It is considered a persistent infection affecting various organs, more likely to infect males. There is currently no licensed vaccination available for Whipple’s disease; thus, the development of a chimeric peptide-based vaccine against T. whipplei has the potential to be tremendously beneficial in preventing Whipple’s disease in the future. The present study aimed to apply modern computational approaches to generate a multi-epitope-based vaccine that expresses antigenic determinants prioritized from the core proteome of two T. whipplei whole proteomes. Using an integrated computational approach, four immunodominant epitopes were found from two extracellular proteins. Combined, these epitopes covered 89.03% of the global population. The shortlisted epitopes exhibited a strong binding affinity for the B- and T-cell reference set of alleles, high antigenicity score, nonallergenic nature, high solubility, nontoxicity, and excellent binders of DRB1*0101. Through the use of appropriate linkers and adjuvation with a suitable adjuvant molecule, the epitopes were designed into a chimeric vaccine. An adjuvant was linked to the connected epitopes to boost immunogenicity and efficiently engage both innate and adaptive immunity. The physiochemical properties of the vaccine were observed favorable, leading toward the 3D modeling of the construct. Furthermore, the vaccine’s binding confirmation to the TLR-4 critical innate immune receptor was also determined using molecular docking and molecular dynamics (MD) simulations, which shows that the vaccine has a strong binding affinity for TLR4 (−29.4452 kcal/mol in MM-GBSA and −42.3229 kcal/mol in MM-PBSA). Overall, the vaccine described here has a promising potential for eliciting protective and targeted immunogenicity, subject to further experimental testing.

9 citations

Journal ArticleDOI
TL;DR: Kurarinone has been extensively studied in lungs (non-small and small) using experimental xenograft models and showed IC50 in the range of 2-62 µM while in vivo efficacy was studied with 20-500 mg/kg body weight of the experimental organism as mentioned in this paper.
Abstract: In the present article we present an update on the role of chemoprevention and other pharmacological activities reported on kurarinone, a natural flavanone (from 1970 to 2021). To the best of our knowledge this is the first and exhaustive review of kurarinone. The literature was obtained from different search engine platforms including PubMed. Kurarinone possesses anticancer potential against cervical, lung (non-small and small), hepatic, esophageal, breast, gastric, cervical, and prostate cancer cells. In vivo anticancer potential of kurarinone has been extensively studied in lungs (non-small and small) using experimental xenograft models. In in vitro anticancer studies, kurarinone showed IC50 in the range of 2-62 µM while in vivo efficacy was studied in the range of 20-500 mg/kg body weight of the experimental organism. The phytochemical showed higher selectivity toward cancer cells in comparison to respective normal cells. kurarinone inhibits cell cycle progression in G2/M and Sub-G1 phase in a cancer-specific context. It induces apoptosis in cancer cells by modulating molecular players involved in apoptosis/anti-apoptotic processes such as NF-κB, caspase 3/8/9/12, Bcl2, Bcl-XL, etc. The phytochemical inhibits metastasis in cancer cells by modulating the protein expression of Vimentin, N-cadherin, E-cadherin, MMP2, MMP3, and MMP9. It produces a cytostatic effect by modulating p21, p27, Cyclin D1, and Cyclin A proteins in cancer cells. Kurarinone possesses stress-mediated anticancer activity and modulates STAT3 and Akt pathways. Besides, the literature showed that kurarinone possesses anti-inflammatory, anti-drug resistance, anti-microbial (fungal, yeast, bacteria, and Coronavirus), channel and transporter modulation, neuroprotection, and estrogenic activities as well as tyrosinase/diacylglycerol acyltransferase/glucosidase/aldose reductase/human carboxylesterases 2 inhibitory potential. Kurarinone also showed therapeutic potential in the clinical study. Further, we also discussed the isolation, bioavailability, metabolism, and toxicity of Kurarinone in experimental models.

7 citations

Journal ArticleDOI
TL;DR: This study took the different targets of SARS-CoV-2 prepared in the Schrodinger maestro and selected dinaciclib and theodrenaline as potential drugs against multiple drug targets, capable of binding to multiple targets simultaneously.
Abstract: Abstract Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is one of the rapid spreading coronaviruses that belongs to the Coronaviridae family. The rapidly evolving nature of SARS-CoV-2 results in a variety of variants with a capability of evasion to existing therapeutics and vaccines. So, there is an imperative need to discover potent drugs that can able to disrupt the function of multiple drug targets to tackle the SARS-CoV-2 menace. Here in this study, we took the different targets of SARS-CoV-2 prepared in the Schrodinger maestro. The library of the DrugBank database is screened against the selected crucial targets. Our molecular docking, Molecular Mechanics/Generalized Born Surface Area (MMGBSA), and molecular dynamics simulation studies led to identifying dinaciclib and theodrenaline as potential drugs against multiple drug targets: main protease, NSP15-endoribonuclease and papain-like-protease, of SARS-CoV-2. Dinaciclib with papain-like protease and NSP15-endoribonuclease show the docking score of −7.015 and −8.737, respectively, while the theodrenaline with NSP15-endoribonuclease and main protease produced the docking score of −8.507 and −7.289, respectively. Furthermore, the binding free energy calculations with MM/GBSA and molecular dynamics simulation studies of the complexes confirm the reliability of the drugs. The selected drugs are capable of binding to multiple targets simultaneously, thus withstanding their activity of target disruption in different variants of SARS-CoV-2. Although, the repurposed drugs are showing potent activity, but may need further in-vitro and in-vivo validations. Communicated by Ramaswamy H. Sarma

7 citations