scispace - formally typeset
Search or ask a question
Author

Mutasem O. Taha

Bio: Mutasem O. Taha is an academic researcher from University of Jordan. The author has contributed to research in topics: Pharmacophore & Quantitative structure–activity relationship. The author has an hindex of 30, co-authored 152 publications receiving 2806 citations. Previous affiliations of Mutasem O. Taha include Loughborough University & Applied Science Private University.


Papers
More filters
Journal ArticleDOI
01 May 2019-Heliyon
TL;DR: The synthesis and degradation mechanisms of chitosan micro/nanoparticles frequently used in drug delivery especially in pulmonary drug delivery are reviewed to understand whether these nanoparticles are biodegradable.

147 citations

Journal ArticleDOI
08 Dec 2020-Cells
TL;DR: This review comprehensively addresses in detail the variations in S protein, its receptor-binding characteristics and detailed structural interactions, the process of cleavage involved in priming, as well as other differences between coronaviruses.
Abstract: The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has recently emerged in China and caused a disease called coronavirus disease 2019 (COVID-19). The virus quickly spread around the world, causing a sustained global outbreak. Although SARS-CoV-2, and other coronaviruses, SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV) are highly similar genetically and at the protein production level, there are significant differences between them. Research has shown that the structural spike (S) protein plays an important role in the evolution and transmission of SARS-CoV-2. So far, studies have shown that various genes encoding primarily for elements of S protein undergo frequent mutation. We have performed an in-depth review of the literature covering the structural and mutational aspects of S protein in the context of SARS-CoV-2, and compared them with those of SARS-CoV and MERS-CoV. Our analytical approach consisted in an initial genome and transcriptome analysis, followed by primary, secondary and tertiary protein structure analysis. Additionally, we investigated the potential effects of these differences on the S protein binding and interactions to angiotensin-converting enzyme 2 (ACE2), and we established, after extensive analysis of previous research articles, that SARS-CoV-2 and SARS-CoV use different ends/regions in S protein receptor-binding motif (RBM) and different types of interactions for their chief binding with ACE2. These differences may have significant implications on pathogenesis, entry and ability to infect intermediate hosts for these coronaviruses. This review comprehensively addresses in detail the variations in S protein, its receptor-binding characteristics and detailed structural interactions, the process of cleavage involved in priming, as well as other differences between coronaviruses.

125 citations

Journal ArticleDOI
TL;DR: The results suggest the suitability of the prepared matrices in colon specific, orally administered drug delivery system, however, future in vivo testing is planned to fully establish the suitabilities of the Prepared polymers for colon‐specific drug delivery.
Abstract: The naturally occurring polymer chitosan was reacted separately with succinic and phthalic anhydrides. The resulting semisynthetic polymers were assessed as potential matrices for colon-specific, orally administered drug delivery. Sodium diclofenac was used as the dispersed model drug. The prepared matrices were incorporated into tablets, which were evaluated in vitro. The evaluation included dissolution studies conducted under simulated gastrointestinal conditions of pH and transit times. The percentage fluid uptake was used to indicate the ability of the matrix to protect an embedded drug from gastric juices. The prepared matrices resisted dissolution under acidic conditions. On the other hand, improved drug release profiles were observed under basic conditions. Therefore, the results suggest the suitability of the prepared matrices in colon specific, orally administered drug delivery system. However, future in vivo testing is planned to fully establish the suitability of the prepared polymers for colon-specific drug delivery.

110 citations

Journal ArticleDOI
TL;DR: Docking studies supported the binding modes suggested by the pharmacophore/QSAR analysis, suggesting the existence of at least two distinct binding modes accessible to ligands within GSK-3beta binding pocket.
Abstract: The pharmacophoric space of glycogen synthase kinase-3beta (GSK-3beta) was explored using two diverse sets of inhibitors. Subsequently, genetic algorithm and multiple linear regression analysis were employed to select optimal combination of pharmacophores and physicochemical descriptors that access self-consistent and predictive quantitative structure-activity relationship (QSAR) against 132 training compounds ( r (2) 123 = 0.663, F = 24.6, r (2) LOO = 0.592, r (2) PRESS against 29 external test inhibitors = 0.695). Two orthogonal pharmacophores emerged in the QSAR, suggesting the existence of at least two distinct binding modes accessible to ligands within GSK-3beta binding pocket. The validity of the QSAR equation and the associated pharmacophores was established by the identification of three nanomolar GSK-3beta inhibitors retrieved from our in-house-built structural database of established drugs, namely, hydroxychloroquine, cimetidine, and gemifloxacin. Docking studies supported the binding modes suggested by the pharmacophore/QSAR analysis. In addition to being excellent leads for subsequent optimization, the anti-GSK-3beta activities of these drugs should have significant clinical implications.

95 citations

Journal ArticleDOI
TL;DR: In vivo experiments illustrated that curcumin significantly increases liver glycogen in fasting Balb/c mice and strongly suggest that the diverse pharmacological activities ofCurcumin are at least partially mediated by inhibition of GSK-3β.
Abstract: Curcumin was investigated as an inhibitor of glycogen synthase kinase-3β (GSK-3β) in an attempt to explain some of its interesting multiple pharmacological effects, such as its anti-diabetic, anti-inflammatory, anti-cancer, anti-malarial and anti-alzheimer's properties. The investigation included simulated docking experiments to fit curcumin within the binding pocket of GSK-3β followed by experimental in vitro and in vivo validations. Curcumin was found to optimally fit within the binding pocket of GSK-3β via several attractive interactions with key amino acids. Experimentally, curcumin was found to potently inhibit GSK-3β (IC50 = 66.3 nM). Furthermore, our in vivo experiments illustrated that curcumin significantly increases liver glycogen in fasting Balb/c mice. Our findings strongly suggest that the diverse pharmacological activities of curcumin are at least partially mediated by inhibition of GSK-3β.

86 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The current review of 129 references describes the biological activity of several chitosan derivatives and the modes of action that have been postulated in the literature.

2,615 citations

Journal ArticleDOI
TL;DR: Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. S. Nagar, Punjab-160 062, India, Institute of Biochemistry, Faculty of Medicine, Polytechnic University, Via Ranieri 67, IT-60100 Ancona, Italy, and Department of Medicinal Chemistry & Natural Products,The Hebrew University of Jerusalem, School of Pharmacy-Faculty of medicine, Jerusalem 91120, Israel.
Abstract: Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar,Mohali, Punjab-160 062, India, Institute of Biochemistry, Faculty of Medicine, Polytechnic University, Via Ranieri 67, IT-60100 Ancona, Italy,Green Biotechnology Research Group, The Special Division for Human Life Technology, National Institute of Advanced Industrial Science andTechnology, 1-8-31 Midorigaoka, Ikeda, Osaka-563-8577, Japan, and Department of Medicinal Chemistry & Natural Products,The Hebrew University of Jerusalem, School of Pharmacy-Faculty of Medicine, Jerusalem 91120, IsraelReceived March 2, 2004

2,570 citations

Journal ArticleDOI
TL;DR: The present review outlines the major new findings on the pharmaceutical applications of chitosan-based micro/nanoparticulate drug delivery systems published over the past decade and discusses critically the usefulness of these systems in delivering the bioactive molecules.

2,314 citations

Journal ArticleDOI
TL;DR: The paper reviews the current trend of investigation on antimicrobial activities of chitosan and its mode of action and different physical states are comparatively discussed.

2,260 citations

Journal Article
TL;DR: It is reported that PTEN activation contributes to trastuzumab's antitumor activity and PTEN deficiency is a powerful predictor for trastzumab resistance, suggesting that PI3K-targeting therapies could overcome this resistance.
Abstract: 2458 Despite dramatic improvements in treatment over the past 40 years, acute lymphoblastic leukemia (ALL) remains one of the most common causes of death from disease in childhood. Glucocorticoids are among the most effective agents used in the treatment of lymphoid malignancies, and patient response to treatment is an important determinant of long-term outcome in childhood ALL. In spite of its clinical significance, the molecular basis of glucocorticoid resistance is still poorly understood. The aim of this study was to develop an experimental model system to define clinically relevant mechanisms of glucocorticoid resistance in childhood ALL. An in vivo model of childhood ALL has been developed in our laboratory, using patient biopsies established as xenografts in immune-deficient nonobese diabetic severe-combined immunodeficient (NOD/SCID) mice. This model is highly representative of the human disease (Lock et al., Blood, 99: 4100-4108, 2002). The in vivo responses of these xenografts to the glucocorticoid dexamethasone (DEX) correlated significantly with patient outcome (p 1 μM) in xenografts from six patients, five of whom died of their disease. In contrast, four DEX-sensitive xenografts (IC50 values 2-fold in sensitive xenografts within 8 hours of treatment. In contrast, Bim induction was dramatically attenuated in DEX-resistant xenografts. These results have identified a clinically significant and novel mechanism of glucocorticoid resistance in childhood ALL, which occurs downstream of receptor-ligand interactions, but upstream of the signalling pathway resulting in Bim induction and apoptosis.

1,574 citations