scispace - formally typeset
Search or ask a question
Author

Muthupandian Ashokkumar

Bio: Muthupandian Ashokkumar is an academic researcher from University of Melbourne. The author has contributed to research in topics: Sonochemistry & Sonoluminescence. The author has an hindex of 76, co-authored 511 publications receiving 20771 citations. Previous affiliations of Muthupandian Ashokkumar include University of Rome Tor Vergata & Osaka Prefecture University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this overview, some recently developed experimental procedures for the characterization of acoustic cavitation bubbles have been discussed.

588 citations

Journal ArticleDOI
TL;DR: In this paper, both a batch and focused flow-through ultrasonic cell were utilized for emulsification with ultrasonic power generation at 20-24-kHz, achieving a mean droplet size as low as 135-±-5nm using a mixture of flaxseed oil and water.
Abstract: Oil-in-water emulsions are an important vehicles for the delivery of hydrophobic bioactive compounds into a range of food products. The preparation of very fine emulsions is of increasing interest to the beverage industry, as novel ingredients can be added with negligible impact to solution clarity. In the present study, both a batch and focused flow-through ultrasonic cell were utilized for emulsification with ultrasonic power generation at 20–24 kHz. Emulsions with a mean droplet size as low as 135 ± 5 nm were achieved using a mixture of flaxseed oil and water in the presence of Tween 40 surfactant. Results are comparable to those for emulsions prepared with a microfluidizer operated at 100 MPa. The key to efficient ultrasonic emulsification is to determine an optimum ultrasonic energy intensity input for these systems, as excess energy input may lead to an increase in droplet size. Industrial relevance The preparation of oil-in-water emulsions is a common feature of food processing operations. The use of ultrasound for this purpose can be competitive or even superior in terms of droplet size and energy efficiency when compared to classical rotor­stator dispersion. It may also be more practicable with respect to production cost, equipment contamination and aseptic processing than a microfluidisation approach. The present paper shows that ultrasound can be effective in producing nanoemulsions for use in a range of food ingredients.

556 citations

Journal ArticleDOI
TL;DR: It is demonstrated that it is possible to create remarkably small transparent O/W nanoemulsions with average diameters as low as 40nm from sunflower oil using ultrasound or high shear homogenization and a surfactant/co-surfactant/oil system that is well optimised.

548 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive overview of the latest progress on morphology control and growth mechanism of BiVO4 micro/nano-structures, doping with metal and non-metal elements and semiconductor coupling along with some highlights in the photodegradation of organic pollutants under visible-light illumination is provided.
Abstract: Bismuth vanadate (BiVO4) is a promising visible-light driven semiconductor photocatalyst with various benefits such as low production cost, low toxicity, high photostability, resistance to photo-corrosion and narrow band gap with a good response to visible-light excite. However, the fast recombination of photoinduced charge carriers restricts their photocatalytic activity. In the past decades, many attempts were adopted to enhance the photocatalytic activity of BiVO4. Significant advances in understanding the fundamental issues and the development of an efficient photocatalyst have been made in current years. In this review, we have provided a comprehensive overview of the latest progress on the morphology control and growth mechanism of BiVO4 micro/nano-structures, doping with metal and non-metal elements and semiconductor coupling along with some highlights in the photodegradation of organic pollutants under visible-light illumination. This review may benefit the researchers and engineers in the arena of material chemistry for designing new BiVO4 based photocatalysts with low production cost and high efficiency.

474 citations

Journal ArticleDOI
TL;DR: Overall, the sonication process had little effect on the structure of proteins in WPC solutions which is critical to preserving functional properties during the ultrasonic processing of whey protein based dairy products.

452 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Abstract: As a fascinating conjugated polymer, graphitic carbon nitride (g-C3N4) has become a new research hotspot and drawn broad interdisciplinary attention as a metal-free and visible-light-responsive photocatalyst in the arena of solar energy conversion and environmental remediation. This is due to its appealing electronic band structure, high physicochemical stability, and “earth-abundant” nature. This critical review summarizes a panorama of the latest progress related to the design and construction of pristine g-C3N4 and g-C3N4-based nanocomposites, including (1) nanoarchitecture design of bare g-C3N4, such as hard and soft templating approaches, supramolecular preorganization assembly, exfoliation, and template-free synthesis routes, (2) functionalization of g-C3N4 at an atomic level (elemental doping) and molecular level (copolymerization), and (3) modification of g-C3N4 with well-matched energy levels of another semiconductor or a metal as a cocatalyst to form heterojunction nanostructures. The constructi...

5,054 citations

Journal ArticleDOI
TL;DR: In this article, the up-to-date development of the above-mentioned technologies applied to TiO 2 photocatalytic hydrogen production is reviewed, based on the studies reported in the literature, metal ion-implantation and dye sensitization are very effective methods to extend the activating spectrum to the visible range.
Abstract: Nano-sized TiO 2 photocatalytic water-splitting technology has great potential for low-cost, environmentally friendly solar-hydrogen production to support the future hydrogen economy. Presently, the solar-to-hydrogen energy conversion efficiency is too low for the technology to be economically sound. The main barriers are the rapid recombination of photo-generated electron/hole pairs as well as backward reaction and the poor activation of TiO 2 by visible light. In response to these deficiencies, many investigators have been conducting research with an emphasis on effective remediation methods. Some investigators studied the effects of addition of sacrificial reagents and carbonate salts to prohibit rapid recombination of electron/hole pairs and backward reactions. Other research focused on the enhancement of photocatalysis by modification of TiO 2 by means of metal loading, metal ion doping, dye sensitization, composite semiconductor, anion doping and metal ion-implantation. This paper aims to review the up-to-date development of the above-mentioned technologies applied to TiO 2 photocatalytic hydrogen production. Based on the studies reported in the literature, metal ion-implantation and dye sensitization are very effective methods to extend the activating spectrum to the visible range. Therefore, they play an important role in the development of efficient photocatalytic hydrogen production.

3,714 citations

Journal ArticleDOI
TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Abstract: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,‡ Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza,‡,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim* †Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo naḿ. 2, 166 10 Prague 6, Czech Republic

3,460 citations