scispace - formally typeset
Search or ask a question
Author

Mykola M. Biliaiev

Bio: Mykola M. Biliaiev is an academic researcher from Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan. The author has contributed to research in topics: Hazardous substance & Pollution. The author has an hindex of 4, co-authored 49 publications receiving 54 citations.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors developed an applied numerical model to calculate the dynamics of atmospheric pollution in the emission of dangerous chemical substances in the event of transportation by railway, taking into account the effect of wind, atmospheric diffusion, the power of emission source, and the movement of the source of emission (depressurized tank) on the process of pollutant dispersion.
Abstract: Purpose. This research focuses on the development of an applied numerical model to calculate the dynamics of atmospheric pollution in the emission of dangerous chemical substances in the event of transportation by railway. Methodology. For the numerical simulation of transport process of the dangerous chemical substance in the atmosphere the equation of convection-diffusion pollutant transport is used. This equation takes into account the effect of wind, atmospheric diffusion, the power of emission source, as well as the movement of the source of emission (depressurized tank) on the process of pollutant dispersion. When carrying out computing experiment one also takes into account the profile of the speed of the wind flow. For the numerical integration of pollutant transport in the atmosphere implicit finite-difference splitting scheme is used. The numerical calculation is divided into four steps of splitting and at each step of splitting the unknown value of the concentration of hazardous substance is determined by the explicit running account scheme. On the basis of the numerical model it was created the code using the algorithmic language FORTRAN. One conducted the computational experiments to assess the level of air pollution near the railway station «Illarionovo» in the event of a possible accident during transportation of ammonia. Findings. The proposed model allows you to quickly calculate the air pollution after the emission of chemically hazardous substance, taking into account the motion of the emission source. The model makes it possible to determine the size of the land surface pollution zones and the amount of pollutants deposited on a specific area. Using the developed numerical model it was estimated the environmental damage near the railway station «Illarionovo». Originality. One can use the numerical model to calculate the size and intensity of the chemical contamination zones after accidents on transport. Practical value. The numerical model, developed by authors, can be used to estimate the size and intensity of the chemical contamination zones during emergency on transport. The developed numerical model solves the problem of assessing the impact of emergency emission of ammonia near the railway station «Illarionovo».

7 citations

Journal ArticleDOI
TL;DR: In this article, a complex numerical model to calculate air ion regime in the premises is developed, which is based on the use of aerodynamics, electrostatics and mass transfer equations, and takes into account the effect of air flows caused by the ventilation operation, diffusion, electric field effects, as well as the interaction of different polarities ions with each other and with the dust particles.
Abstract: Purpose. The article highlights the question about creation the complex numerical models in order to calculate the ions concentration fields in premises of various purpose and in work areas. Developed complex should take into account the main physical factors influencing the formation of the concentration field of ions, that is, aerodynamics of air jets in the room, presence of furniture, equipment, placement of ventilation holes, ventilation mode, location of ionization sources, transfer of ions under the electric field effect, other factors, determining the intensity and shape of the field of concentration of ions. In addition, complex of numerical models has to ensure conducting of the express calculation of the ions concentration in the premises, allowing quick sorting of possible variants and enabling «enlarged» evaluation of air ions concentration in the premises. Methodology . The complex numerical models to calculate air ion regime in the premises is developed. CFD numerical model is based on the use of aerodynamics, electrostatics and mass transfer equations, and takes into account the effect of air flows caused by the ventilation operation, diffusion, electric field effects, as well as the interaction of different polarities ions with each other and with the dust particles. The proposed balance model for computation of air ion regime indoors allows operative calculating the ions concentration field considering pulsed operation of the ionizer. Findings . The calculated data are received, on the basis of which one can estimate the ions concentration anywhere in the premises with artificial air ionization. An example of calculating the negative ions concentration on the basis of the CFD numerical model in the premises with reengineering transformations is given. On the basis of the developed balance model the air ions concentration in the room volume was calculated. Originality. Results of the air ion regime computation in premise, which is based on numerical 2D CFD model and balance model, are presented. Practical value. A numerical CFD model and balance model for the computation of air ion regime allow calculating the ions concentration in the premises in the conditions of artificial air ionization taking into account the main physical factors determining the formation of ions concentration fields.

5 citations

Journal ArticleDOI
TL;DR: In this article, a numerical model has been developed for the computer calculation of the biological wastewater treatment process in aerotanks, taking into account hydrodynamics, based on two-level mass conservation equations for the substrate and activated sludge and the velocity potential equation.
Abstract: Purpose. Efficiency determination of the aeration tank at the stage of design or reconstruction of bioreactors in which biological wastewater treatment is carried out requires the use of special mathematical models and calculation methods. The main purpose of the article is to develop CFD models for evaluating the operation efficiency of aeration tanks. Methodology. A numerical model has been developed for the computer calculation of the biological wastewater treatment process in aerotanks, taking into account hydrodynamics. The model is based on two-level mass conservation equations for the substrate and activated sludge and the velocity potential equation. The process of biological transformation of the substrate is calculated based on the Monod model. For the numerical integration of the mass transfer equations of activated sludge and substrate, the alternating-triangular difference splitting scheme is used. In this case, the basic equations are divided into two equations of a more simplified form. For the numerical integration of the equations for the velocity potential, it is split into two one-dimensional equations. Further, each equation is solved according to explicit scheme. For the numerical integration of equations that describe the process of substrate transformation based on the Monod model, the Euler method is used. Findings. The software implementation of the constructed numerical model has been carried out. The results of a computational experiment on the study of the wastewater treatment process in an aeration tank with plates are presented. This leads to the conclusion that the quality control of wastewater treatment in aeration tanks is possible with the help of plates. Originality. A multivariate CFD model has been developed, which makes it possible to quickly assess the efficiency of the aeration tank. A feature of the model is the ability to evaluate the operation of the aeration tank, taking into account its geometric shape and location of additional plates in the construction. Practical value. The constructed numerical model can be used during calculations in the case of designing aeration tanks, or in determining the efficiency of wastewater treatment under new operating conditions.

4 citations

Journal ArticleDOI
Abstract: Purpose. The main purpose of the article is to develop a 3D CFD model for modeling the process of biological wastewater treatment in an aeration tank. Methodology. For mathematical modeling of the process of biological wastewater treatment in the reactor, taking into account the flow hydrodynamics, geometric shape of the aeration tank, convective-diffusion transfer of the substrate and activated sludge, a 3D CFD model was built. The model is based on the three-dimensional equation of motion of an ideal liquid and the equation of mass conservation for the substrate, activated sludge. The field of sewage flow rate in the aeration tank is calculated based on the velocity potential equation. The process of biological transformation of the substrate is calculated on the basis of the Monod model. The splitting scheme was used for numerical integration of the equations of convective-diffusion transfer of activated sludge and substrate. The splitting is carried out in such a way to take into account the transfer of substrate (activated sludge) in only one direction at each step of splitting. The calculation of the unknown value of the substrate (activated sludge) concentration is carried out according to an explicit scheme. The Richardson method is used to numerically integrate the three-dimensional equation for the velocity potential, and the unknown value of the velocity potential is calculated by an explicit formula. Euler's method is used for numerical integration of equations describing the process of substrate transformation and change in activated sludge concentration (Monod model). Findings. The software implementation of the constructed 3D CFD model is carried out. A description of the structure of the developed software package is provided. The results of a computer experiment to study the process of wastewater treatment in an aeration tank with additional elements are presented. Originality. A new multifactor 3D CFD model has been developed, which allows quick assessing the efficiency of biological treatment in an aeration tank. Practical value. The constructed 3D CFD model can be used to analyze the efficiency of the aeration tank under different operating conditions at the stage of sketch design of wastewater treatment systems.

4 citations

Journal ArticleDOI
TL;DR: Biliaiev et al. as discussed by the authors reported ORCID 0000-0002-1531-7882; T.M. Rusakova and T.E. Bondarenko: Orcid 0000-0003-4717-3032; E. Gunko and E. Masevitch: ORcID0000-0001-9257-763X
Abstract: M. Biliaiev: ORCID 0000-0002-1531-7882; T. Rusakova: ORCID 0000-0001-5526-3578; I. Kalashnikov: ORCID 0000-0002-2814-380X; I. Bondarenko: ORCID 0000-0003-4717-3032; E. Gunko: ORCID 0000-0001-9257-763X

4 citations


Cited by
More filters
01 Jan 2016
TL;DR: In this article, the aerodynamic effects of sand barrier on the flow is analyzed and an empirical dimensionless performance estimator is proposed and used to provide general design guidelines for sand barrier.
Abstract: Abstract Protection from windblown-sand is one of the key engineering issues for construction and maintenance of human infrastructures in arid environments. In the last century, several barriers with different shapes have been proposed in order to overcome this problem, but literature lacks of a systematic performance quantitative analysis, and the key geometric parameters that promote sedimentation have not been yet recognized. A deep understanding of the aerodynamics effects of sand barrier on the flow is an unavoidable step to achieve these objectives. The present computational study aims to comparatively analyze different kinds of windblown sand mitigation solid barriers, clarify their working principles, extract from the aerodynamics analysis key geometrical features of the barriers and relate them to the sand trapping performances. Approximated metrics for performance assessment are introduced using aerodynamic parameters. The performances of an innovative solid barrier and the ones of commonly used solid barriers are compared in terms of these metrics. The effects of incoming wind velocity profiles on sand trapping performances are evaluated as well. An empirical dimensionless performance estimator is proposed and used to provide general design guidelines.

32 citations

Journal ArticleDOI
TL;DR: In this paper, numerical models based on the use of Navier-Stokes equations, to determine the velocity field of the wind flow near cars and buildings, and contaminants-transfer equations in the atmosphere were developed.
Abstract: Purpose. The paper highlights the d evelopment of numerical models for prediction of atmospheric pollution in case of burning of the solid rocket propellant in a railway car, situated near the building on railway territory. These models can be used in predicting the effectiveness of neutralization upon the atmosphere protection for this type of accidents. Methodology. To solve this problem the numerical models based on the use of Navier-Stokes equations, to determine the velocity field of the wind flow near cars and buildings, and contaminants-transfer equations in the atmosphere were developed. For the numerical integration of pollutant transport equation was used implicit «change – triangle» difference scheme. When constructing a difference scheme physical and geometric cleavage of the transfer equation is carried out in four steps. Unknown value of pollutant concentration at each step of cleavage is determined by the explicit scheme – the method of «point-to-point computation». For the numerical integration of the Navier-Stokes equations are used implicit difference schemes. When carrying out computing experiment also takes into account: the velocity profile of wind flow; interaction between the building and the wind flow and flame jet of solid rocket propellant; the presence of a railroad car; inside which there is a source of pollution; instability of pollutant emissions. On the basis of constructed numerical models was performed the computer experiment for assessing the level of air pollution at dangerous cargo rail transportation in case of emergency at railway territory.The application calculations for the timely combustion products neutralization of solid rocket propellant were carried out. Findings. The numerical models that let promptly calculate air contamination in case of emergency during solid rocket propellant transportation, as well as calculate the rational parameters of pollutant neutralization process were developed by the researcher. These models can be used for routine calculations of various accident scenarios simulation. Originality. Numerical models were developed; they take into account significant factors, influencing the pollutant dispersion process in the atmosphere. On their base a pollutant neutralization method was offered in emergency situations on the railway transport. Practical value. Efficient numerical models, so called «diagnostic models» were considered for the rapid calculation of the air pollution level and air protection technology in emergency situations, in particular, in the case of railway transportation the solid rocket propellant.

22 citations

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors introduced the basic concepts, generation, distribution, and hazards of coal mine dust and analyzes the characteristics, applicable conditions, and use effects of various dust control measures such as ventilation dust removal and wet dust removal.
Abstract: In recent years, with the increasing level of mechanization, automation, and intelligence in mine mining, dust pollution in the working environment of coal mines has become increasingly serious. Coal mine dust prevention is an important work related to the life, health, and production safety of miners, and it is also one of the technical problems of mine safety in production. With the continuous revision and improvement of China′s Occupational Disease Prevention and Control Law, coal mining enterprises have generally strengthened the publicity, prevention, and control of occupational diseases among employees, and the control of coal mine dust has been used as a means for enterprises to improve the production environment and strengthen the occupational health of employees. Key work-based studies have shown that China’s coal mines have formed a theoretical system and technology system of dust prevention and control. In the future, China’s coal mines will start from intelligent dust prevention, achieve high-precision dust sensing-transmission-assessment and early warning, and develop a combined dust collector that integrates the functions of atomization dust removal, miniaturization, dry and wet mixing, and large air suction capacity. The combined dust collector realizes the efficient ventilation control and dust removal of the fine dust in wide-area complex spaces such as fully mechanized mining face and fully mechanized mining face. At the same time, breakthroughs have been achieved in low-permeability coal seams, such as strong hydraulic permeability-enhancing technology, intelligent dust-proof robots, and chemical dust suppression. This article introduces the basic concepts, generation, distribution, and hazards of coal mine dust and analyzes the characteristics, applicable conditions, and use effects of various dust control measures such as ventilation dust removal and wet dust removal. Moreover, this article also proposes specific prevention and control measures for related occupational diseases and discusses the development trend of dust prevention and control technology in the hope of providing guidance and reference for coal mine dust prevention and control.

14 citations