scispace - formally typeset
Search or ask a question
Author

Myoung Shin Hong

Bio: Myoung Shin Hong is an academic researcher from Ajou University. The author has contributed to research in topics: Polymer capacitor & Capacitor plague. The author has an hindex of 1, co-authored 1 publications receiving 243 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a hybrid capacitor in neutral KCl aqueous electrolyte, which consists of amorphous manganese oxide (a-MnO 2.nH 2 O) as a cathode and activated carbon as an anode, was reported.
Abstract: This study reports a hybrid capacitor in neutral KCI aqueous electrolyte, which consists of amorphous manganese oxide (a-MnO 2 .nH 2 O) as a cathode and activated carbon as an anode. The electrochemical performance of the hybrid capacitor is characterized by cyclic voltammetry and a dc charge/discharge test. The hybrid capacitor shows ideal capacitor behavior with an extended operating voltage of 2 V. The extended operating voltage is preferentially attributed to having asymmetric electrodes with different stable voltage windows and good electrochemical stability in neutral KCl aqueous electrolyte. According to the extended operating voltage, the energy density of the hybrid capacitor at a current density of 0.25 A/g, was found to be 28.8 Wh/kg which is comparable to that of an amorphous ruthenium oxide capacitor (26.7 Wh/kg). The hybrid capacitor also shows no degradation of capacitance during 100 cycles except an initial loss of 7% within a few cycles.

260 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations

Journal ArticleDOI
01 Aug 2008-Science
TL;DR: Electrochemical capacitors enable rapid storage and efficient delivery of electrical energy in heavy-duty applications and are being enabled by electrochemical capacitor technology.
Abstract: Rapid storage and efficient delivery of electrical energy in heavy-duty applications are being enabled by electrochemical capacitors.

4,177 citations

Journal ArticleDOI
TL;DR: The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature, and challenges in producing high-performing electrolytes are analyzed.
Abstract: Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references).

2,480 citations

Journal ArticleDOI
TL;DR: This review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes, and summarizes the key aspects of various carbon materials synthesized for use in supercapacitors.
Abstract: Electrical energy storage (EES) is one of the most critical areas of technological research around the world. Storing and efficiently using electricity generated by intermittent sources and the transition of our transportation fleet to electric drive depend fundamentally on the development of EES systems with high energy and power densities. Supercapacitors are promising devices for highly efficient energy storage and power management, yet they still suffer from moderate energy densities compared to batteries. To establish a detailed understanding of the science and technology of carbon/carbon supercapacitors, this review discusses the basic principles of the electrical double-layer (EDL), especially regarding the correlation between ion size/ion solvation and the pore size of porous carbon electrodes. We summarize the key aspects of various carbon materials synthesized for use in supercapacitors. With the objective of improving the energy density, the last two sections are dedicated to strategies to increase the capacitance by either introducing pseudocapacitive materials or by using novel electrolytes that allow to increasing the cell voltage. In particular, advances in ionic liquids, but also in the field of organic electrolytes, are discussed and electrode mass balancing is expanded because of its importance to create higher performance asymmetric electrochemical capacitors.

2,140 citations

Journal ArticleDOI
TL;DR: This review looks at the essential energy-storage mechanisms and performance evaluation criteria for asymmetric supercapacitors to understand the wide-ranging research conducted in this area and highlights several key scientific challenges.
Abstract: Ongoing technological advances in diverse fields including portable electronics, transportation, and green energy are often hindered by the insufficient capability of energy-storage devices By taking advantage of two different electrode materials, asymmetric supercapacitors can extend their operating voltage window beyond the thermodynamic decomposition voltage of electrolytes while enabling a solution to the energy storage limitations of symmetric supercapacitors This review provides comprehensive knowledge to this field We first look at the essential energy-storage mechanisms and performance evaluation criteria for asymmetric supercapacitors to understand the wide-ranging research conducted in this area Then we move to the recent progress made for the design and fabrication of electrode materials and the overall structure of asymmetric supercapacitors in different categories We also highlight several key scientific challenges and present our perspectives on enhancing the electrochemical performance of future asymmetric supercapacitors

2,030 citations