scispace - formally typeset
Search or ask a question
Author

Myriam Moreau

Bio: Myriam Moreau is an academic researcher from university of lille. The author has contributed to research in topics: Raman spectroscopy & High-resolution transmission electron microscopy. The author has an hindex of 19, co-authored 46 publications receiving 1827 citations. Previous affiliations of Myriam Moreau include Centre national de la recherche scientifique & Lille University of Science and Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: A new Raman technique (Raman area mode microspectroscopy) giving an homogeneous repartition of power within a large laser beam is presented, this technique being powerful to study strongly heterogeneous CM and/or photosensitive samples.

738 citations

01 Sep 2011
TL;DR: In this article, the mechanisms of foliar uptake of lead by lettuce (Lactuca sativa ) exposed to the atmospheric fallouts of a lead-recycling plant were studied, and several pathways for foliar lead uptake were discussed.
Abstract: Metal uptake by plants occurs by soil-root transfer but also by direct transfer of contaminants from the atmosphere to the shoots. This second pathway may be particularly important in kitchen gardens near industrial plants. The mechanisms of foliar uptake of lead by lettuce ( Lactuca sativa ) exposed to the atmospheric fallouts of a lead-recycling plant were studied. After 43 days of exposure, the thoroughly washed leaves contained 335 +/- 50 mg Pb kg(-1) (dry weight). Micro-X-ray fluorescence mappings evidenced Pb-rich spots of a few hundreds of micrometers in diameter located in necrotic zones. These spots were more abundant at the base of the central nervure. Environmental scanning electron microscopy coupled with energy dispersive X-ray microanalysis showed that smaller particles (a few micrometers in diameter) were also present in other regions of the leaves, often located beneath the leaf surface. In addition, submicrometric particles were observed inside stomatal openings. Raman microspectrometry analyses of the leaves identified smelter-originated Pb minerals but also secondary phases likely resulting from the weathering of original particles. On the basis of these observations, several pathways for foliar lead uptake are discussed. A better understanding of these mechanisms may be of interest for risk assessment of population exposure to atmospheric metal contamination.

245 citations

Journal ArticleDOI
TL;DR: In this article, the crystallization kinetics and the resulting structure and morphology of polylactide (PLA) were investigated in the presence of carbon nanotubes (CNTs).
Abstract: The crystallization kinetics and the resulting structure and morphology of polylactide (PLA) were investigated in the presence of carbon nanotubes (CNTs). Nanocomposite samples prepared by solution and melt mixing present homogeneous filler dispersion, as observed by scanning electron microscopy. Calorimetric characterization of the nonisothermal and isothermal crystallization behavior analyzed according to Avrami’s theory provides evidence of the significant impact of CNTs on the crystallization kinetics of the PLA matrix. The nucleating effect of the nanofillers is confirmed by Raman spectroscopy experiments. Indeed, during isothermal crystallization, the nanotube characteristic vibrations are strongly affected by the development of polymer crystalline phase. Additionally, CNTs increase the number of nucleation sites and thereby decrease the average spherolite size as observed by optical microscopy. The PLA crystal structure is not modified by the presence of CNTs, as probed by X-ray diffraction.

197 citations

Journal ArticleDOI
TL;DR: In this article, the authors collected gas hydrates and gas bubbles during the MARNAUT cruise (May-June 2007) in the Sea of Marmara along the North Anatolian Fault system, Turkey.

117 citations

Journal ArticleDOI
TL;DR: In this article, the role of cell wall polysaccharides in the attachment and organization of border-like cells was investigated in several well-characterized mutants defective in the biosynthesis of xyloglucan, cellulose, or pectin.
Abstract: Border-like cells are released by Arabidopsis (Arabidopsis thaliana) root tips as organized layers of several cells that remain attached to each other rather than completely detached from each other, as is usually observed in border cells of many species. Unlike border cells, cell attachment between border-like cells is maintained after their release into the external environment. To investigate the role of cell wall polysaccharides in the attachment and organization of border-like cells, we have examined their release in several well-characterized mutants defective in the biosynthesis of xyloglucan, cellulose, or pectin. Our data show that among all mutants examined, only quasimodo mutants (qua1-1 and qua2-1), which have been characterized as producing less homogalacturonan, had an altered border-like cell phenotype as compared with the wild type. Border-like cells in both lines were released as isolated cells separated from each other, with the phenotype being much more pronounced in qua1-1 than in qua2-1. Further analysis of border-like cells in the qua1-1 mutant using immunocytochemistry and a set of anti-cell wall polysaccharide antibodies showed that the loss of the wild-type phenotype was accompanied by (1) a reduction in homogalacturonan-JIM5 epitope in the cell wall of border-like cells, confirmed by Fourier transform infrared microspectrometry, and (2) the secretion of an abundant mucilage that is enriched in xylogalacturonan and arabinogalactan-protein epitopes, in which the cells are trapped in the vicinity of the root tip.

89 citations


Cited by
More filters
Journal ArticleDOI
01 Jul 2005-Carbon
TL;DR: In this article, experimental conditions and mathematical fitting procedures for the collection and analysis of Raman spectra of soot and related carbonaceous materials have been investigated and optimised with a Raman microscope system operated at three different laser excitation wavelengths (514, 633, and 780 nm).

3,304 citations

Journal ArticleDOI
TL;DR: The delivery of nanoparticulate materials to plants and their ultimate effects are reviewed to provide some insights for the safe use of this novel technology for the improvement of crops.

1,204 citations

Journal ArticleDOI
TL;DR: The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems.
Abstract: Ionic liquids are remarkable chemical compounds, which find applications in many areas of modern science. Because of their highly tunable nature and exceptional properties, ionic liquids have become essential players in the fields of synthesis and catalysis, extraction, electrochemistry, analytics, biotechnology, etc. Apart from physical and chemical features of ionic liquids, their high biological activity has been attracting significant attention from biochemists, ecologists, and medical scientists. This Review is dedicated to biological activities of ionic liquids, with a special emphasis on their potential employment in pharmaceutics and medicine. The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems. Dedicated attention is given to a novel active pharmaceutical ingredient-ionic liquid (API-IL) concept, which suggests using traditional drugs in ...

1,065 citations

Book ChapterDOI
TL;DR: The purpose of this review is to describe how plants take lead up and to link such uptake to the ecotoxicity of lead in plants, and to address the mechanisms by which plants or plant systems detoxify lead.
Abstract: Plants are the target of a wide range of pollutants that vary in concentration, speciation, and toxicity. Such pollutants mainly enter the plant system through the soil (Arshad et al. 2008) or via the atmosphere (Uzu et al. 2010). Among common pollutants that affect plants, lead is among the most toxic and frequently encountered (Cecchi et al. 2008; Grover et al. 2010; Shahid et al. 2011). Lead continues to be used widely in many industrial processes and occurs as a contaminant in all environmental compartments (soils, water, the atmosphere, and living organisms). The prominence of environmental lead contamination results both from its persistence (Islam et al. 2008; Andra et al. 2009; Punamiya et al. 2010) and from its present and past numerous sources. These sources have included smelting, combustion of leaded gasoline, or applications of lead-contaminated media (sewage sludge and fertilizers) to land (Piotrowska et al. 2009; Gupta et al. 2009; Sammut et al. 2010; Grover et al. 2010). In 2009, production of recoverable lead from mining operations was 1690, 516, and 400 thousand metric tons by China, Australia, and the USA, respectively (USGS 2009).

696 citations

Journal ArticleDOI
TL;DR: This is the first review regarding biogeochemical behaviour of heavy metals in atmosphere-plant system and summarizes the mechanisms involved in foliar heavy metal uptake, transfer, compartmentation, toxicity and in plant detoxification.

654 citations